• Title/Summary/Keyword: stress/strain effect

Search Result 1,395, Processing Time 0.03 seconds

Evaluation of the Effect of Coupler on the Ductility of Rebar by Uniaxial Tensile Test (1축 인장시험을 통한 커플러가 철근 연성도에 미치는 영향 평가)

  • Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan;Jung, Chi-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.90-98
    • /
    • 2018
  • Recently, various reinforced concrete joints have been used in reinforced concrete structures. Therefore, it is important to grasp the tensile properties of the spliced rebar. In this study, uniaxial tensile tests were conducted on Grade 60 D22(#7), D29(#9), and two kinds of couplers manufactured according to ASTM A615 standard for evaluating ductility of coupler joints. The strain was measured using an image processing method more accurate and capable of measuring at various points freely. As the result of uniaxial tensile test, it was possible to calculate the stress-strain relationship and the longitudinal strain distribution according to the stress stages and it was founded that the average strain becomes lower as more occupying the coupler joint portions in the same gauge length. In addition, the empirical equations are proposed to account for the effect of the length of the coupler on the ultimate strain and the rupture strain.

Prediction of the Forming Limit Diagram for AZ31B Sheet at Elevated Temperatures Considering the Strain-rate Effect - II (변형률속도 효과를 고려한 AZ31B 판재의 온간 성형한계도 예측 - II)

  • Choi, S.C.;Kim, H.Y.;Kim, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.285-288
    • /
    • 2009
  • The purpose of this study is to predict the forming limit diagram (FLD) of strain-rate sensitive materials on the basis of the Marciniak and Kuczynski (M-K) theory. The strain-rate effect is taken into consideration in such a way that the stress-strain curves for various strain-rates are inputted into the formulation as point data, not as curve-fitted models such as power function. Tensile tests and R-value tests were carried out at several levels of temperature and strain-rate from $25^{\circ}C$ to $300^{\circ}C$ and 0.16 to 0.00016/s, respectively to obtain the mechanical properties of AZ31B magnesium alloy sheet. The FLD of this material was experimentally obtained by limit dome height tests with the punch velocity of 0.1 and 1.0 mm/s at $250^{\circ}C$. The M-K theory-based FLD predicted using Yld2000-2d yield criterion was compared with the experimental results.

  • PDF

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.

Free-strain solutions for two-dimensional consolidation with sand blankets under multi-ramp loading

  • Zan Li;Songyu Liu;Cuiwei Fu
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.385-393
    • /
    • 2023
  • To analyze the consolidation with horizontal sand drains, the plane strain consolidation model under multi-ramp loading is established, and its corresponding analytical solution is derived by using the separation of variables method. The proposed solution is verified by the field measurement data and finite element results. Then, the effects of the loading mode and stress distribution on consolidation and dissipation of pore pressure are investigated. At the same time, the influence of hydraulic conductivity and thickness of sand blankets on soil consolidation are also analyzed. The results show that the loading mode has a significant effect on both the soil consolidation rate and generation-dissipation process of pore water pressure. In contrast, the influence of stress distribution on pore pressure dissipation is obvious, while its influence on soil consolidation rate is negligible. To guarantee the fully drained condition of the sand blanket, the ratio of hydraulic conductivity of the sand blanket to that of clay layer kd/kv should range from 1.0×104 to 1.0×106 with soil width varying from 100 m to 1000 m. A larger soil width correspondingly needs a greater value of kd/kv to make sure that the pore water can flow through the sand blanket smoothly with little resistance. When the soil width is relatively small (e.g., less than 100 m), the effect of thickness of the sand blanket on soil consolidation is insignificant. And its influence appears obvious gradually with the increase of the soil width.

Study on the mechanical properties test and constitutive model of rock salt

  • Zhao, Baoyun;Huang, Tianzhu;Liu, Dongyan;Liu, Yang;Wang, Xiaoping;Liu, Shu;Yu, Guibao
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.291-298
    • /
    • 2019
  • In order to study the mechanical properties of rock salt, triaxial compression tests under different temperatures and confining pressure are carried out on rock salt specimens, the influence of temperature and confining pressure on the mechanical properties of rock salt was studied. The results show that the temperature has a deteriorative effect on the mechanical properties of rock salt. With the increase of temperature, the peak stress of rock salt decreases visibly; the plastic deformation characteristics become much obvious; the internal friction angle increases; while the cohesion strength decreases. With the increase of confining pressure, the peak stress and peak strain of rock salt will increase under the same temperature. Based on the test data, the Duncan-Chang constitutive model was modified, and the modified Duncan-Chang rock salt constitutive model considering the effect of temperature and confining pressure was established. The stress-strain curve calculated by the modified model was compared with the stress-strain curve obtained from the test. The close match between the test results and the model prediction suggests that the modified Duncan-Chang constitutive model is accurate in describing the behavior of rock slat under different confining pressure and temperature conditions.

Crack tip plastic zone under Mode I, Mode II and mixed mode (I+II) conditions

  • Ayatollahi, M.R.;Sedighiani, Karo
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.575-598
    • /
    • 2010
  • The shape and size of the plastic zone around the crack tip are analyzed under pure mode I, pure mode II and mixed mode (I+II) loading for small scale yielding and for both plane stress and plane strain conditions. A new analytical formulation is presented to determine the radius of the plastic zone in a non-dimensional form. In particular, the effect of T-stress on the plastic zone around the crack tip is studied. The results of this investigation indicate that the stress field with a T-stress always yields a larger plastic zone than the field without a T-stress. It is found that under predominantly mode I loading, the effect of a negative T-stress on the size of the plastic zone is more dramatic than a positive T-stress. However, when mode II portion of loading is dominating the effect of both positive and negative T-stresses on the size of the plastic zone is almost equal. For validating the analytical results, several finite element analyses were performed. It is shown that the results obtained by the proposed analytical formulation are in very good agreements with those obtained from the finite element analyses.

An experimental Study on the Confinement Effect of Concrete specimens confined by Single Spirals (단나선근으로 횡보강된 콘크리트의 횡보강효과)

  • 김진근;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.301-305
    • /
    • 1994
  • Experimental research was carried out to investigate the confinement effect of concrete specimens confined by single spirals subjected to the concentric axial compressive load. Main variables are the compressive strength of concrete, the spacing of the spiral reinforcement and the yield strength of the spiral reinforcement. Axial stress-strain curves are reported.

  • PDF

The friction effects at high strain rates of materials under dynamic compression loads (동압축 하중을 받는 재료의 고변형도율에서의 마찰영향)

  • 김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.454-464
    • /
    • 1987
  • The objective of this research is to analyze and evaluate the dynamic flow curve of metals under impact loading at both high strain rate (.epsilon.=1/h dh/dt > 10$\^$3/m/s/m) and large strain (.epsilon.=In h/h$\_$0/ > 1.0). A test method for dynamic compression of metal disc is described. The velocity of the striker face and the force on the anvil are measured during the impact period. From these primitive data the axial stress, strain, and strain rate of the disc are obtained. The Strain rate is determined by the striker velocity divided by the specimen height. This gives a slightly increasing strain rate over most of the deformation period. Strain rates of 100 to 10,000 per second are achieved. Attainable final strains are 150%. A discussion of several problem areas is presented. The friction on the specimen surfaces, the determination of the frictional coefficient, the influence of the specimen geometry (h$\_$0//d$\_$0/ ratio) on the friction effect, the lock-up condition for a given configuration, the friction correction factor, and the evaluation of several lubricants are given. The flow function(stress verus strain) is dependent on the material condition(e.g., prior cold work), specimen geometry, strain rate, and temperature.

Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent

  • Othman, Mohamed I.A.;Zidan, Magda E.M.;Mohamed, Ibrahim E.A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • The present paper attempts to investigate the propagation of plane waves in an isotropic elastic medium under the effect of initial stress and temperature-dependent properties. The modulus of elasticity is taken as a linear function of the reference temperature. The formulation is applied under the thermoelasticity theory with dual-phase-lag; the normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress, and the strain components. Numerical results for the field quantities are given in the physical domain and illustrated graphically. Comparisons are made with the results predicted by different theories (Lord-Shulman theory, the classical coupled theory of thermoelasticity and the dual-phase-lag model) in the absence and presence of the initial stress as well as the case where the modulus of elasticity is independent of temperature.

AE Characteristics on the Damage Behavior of TiNi/A16061 Shape Memory Alloy Composites at High Temperature (TiNi/A16061 형상기억복합재료의 고온에서의 손상거동에 대한 AE 특성)

  • Lee, Jin-Kyung;Park, Young-Chul;Ku, Hoo-Taek
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • It has been known that tensile residual stresses occurring by the thermal expansion coefficient mismatch between fiber and matrix is a cause of the weak strength of metal matrix composites(MMCs). In order to solve this problem, TiNi alloy fiber was used as a reinforced material in TiNi/A16001 shape memory alloy composite in this study. TiNi alloy fiber improves the tensile strength of the composite by causing compressive residual stress in matrix on the basis of its shape memory effect. Pre-strain was imposed to generate the compressive residual stresses inside the TiNi/A16001 shape memory alloy composites. AE technique was used to quantify the microscopic damage behavior of the composite at high temperature. The effect of applied pre-strains on the AE behavior was also evaluated.