• 제목/요약/키워드: stress/strain effect

검색결과 1,395건 처리시간 0.027초

판재의 소성변형 거동을 동정하기 위한 새로운 응력-변형률 모델 (New Stress-Strain Model for Identifying Plastic Deformation Behavior of Sheet Materials)

  • 김영석;팜콕트완;김찬일
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.273-279
    • /
    • 2017
  • In sheet metal forming numerical analysis, the strain hardening equation has a significant effect on calculation results, especially in the field of spring-back. This study introduces the Kim-Tuan strain hardening model. This model represents sheet material behavior over the entire strain hardening range. The proposed model is compared to other well known strain hardening models using a series of uniaxial tensile tests. These tests are performed to determine the stress-strain relationship for Al6016-T4, DP980, and CP Ti sheets. In addition, the Kim-Tuan model is used to integrate the CP Ti sheet strain hardening equation in ABAQUS analysis to predict spring-back amount in a bending test. These tests highlight the improved accuracy of the proposed equation in the numerical field. Bending tests to evaluate prediction accuracy are also performed and compared with numerical analysis results.

Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams

  • Ho, J.C.M.;Au, F.T.K.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.185-198
    • /
    • 2005
  • In the design of reinforced concrete beams, it is a standard practice to use the yield stress of the steel reinforcement for the evaluation of the flexural strength. However, because of strain hardening, the tensile strength of the steel reinforcement is often substantially higher than the yield stress. Thus, it is a common belief that the actual flexural strength should be higher than the theoretical flexural strength evaluated with strain hardening ignored. The possible increase in flexural strength due to strain hardening is a two-edge sword. In some cases, it may be treated as strength reserve contributing to extra safety. In other cases, it could lead to greater shear demand causing brittle shear failure of the beam or unexpected greater capacity of the beam causing violation of the strong column-weak beam design philosophy. Strain hardening may also have certain effect on the flexural ductility. In this paper, the effects of strain hardening on the post-peak flexural behaviour, particularly the flexural strength and ductility, of reinforced normal- and high-strength concrete beams are studied. The results reveal that the effects of strain hardening could be quite significant when the tension steel ratio is relatively small.

Analyzing the mechano-bactericidal effect of nano-patterned surfaces by finite element method and verification with artificial neural networks

  • Ecren Uzun Yaylaci;Murat Yaylaci;Mehmet Emin Ozdemir;Merve Terzi;Sevval Ozturk
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.165-174
    • /
    • 2023
  • The study investigated the effect of geometric structures of nano-patterned surfaces, such as peak sharpness, height, width, aspect ratio, and spacing, on mechano-bactericidal properties. Here, in silico models were developed to explain surface interactions with Escherichia coli. Numerical solutions were performed based on the finite element method and verified by the artificial neural network method. An E. coli cell adhered to the nano surface formed elastic and creep deformation models, and the cells' maximum deformation, maximum stress, and maximum strain were calculated. The results determined that the increase in peak sharpness, aspect ratio, and spacing values increased the maximum deformation, maximum stress, and maximum strain on E. coli cell. In addition, the results showed that FEM and ANN methods were in good agreement with each other. This study proved that the geometrical structures of nano-patterned surfaces have an important role in the mechano-bactericidal effect.

압축 하중사이클을 이용한 양방향 형상기억효과 특성 연구 (Experimental Study on the TWSME Characteristics using Compressive Loading Cycles)

  • 유영익;김현철;이정주;이우용
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.101-107
    • /
    • 2009
  • Actuators using shape memory alloys use the one-way shape recovery stress. But when external load is applied the accumulated plastic strain induced by repeated deformation is the factor of generation of uncorrect recovery stress and unreliability. To solve this problem, two-way shape memory effect (TWSME) is considered. TWSME induced by plastic deformation have advantages including simple heating cycle without external force and enough recovery force for using actuators. but there is no research on cylinder-type or tube-type shape memory alloy actuators using two-way shape memory effect until now. Therefore in this study, characteristics of two-way shape memory effect is verified through the compression experiments using cylinder-type and tube-type specimens.

개구부가 있는 철근콘크리트 전단벽의 극한해석 (Ultimate Analysis of Reinforced Concrete Shear Walls with Opening)

  • 허남륜;유영화;김운학
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.195-205
    • /
    • 2001
  • An analytical finite element approach to nonlinear behavior of reinforced concrete shear walls with opening under monotonic loading was presented in this paper. In order to achieve the objectives of present paper, the orthogonal anisotropic models for cracked reinforced concrete element based on smeared crack concept were used as the nonlinear material models of biaxial state of stress. The stiffness of cracked concrete was evaluated through the combined use of tension and compression stiffness models in and parallel directions of crack, respectively and shear transfer effect due to the aggregate interlocking at crack surface. The stress and strain of reinforcement in concrete was evaluated using the average stress and average strain relation with bond effect. based on smeared crack concept. The diagonal reinforcing bar was modeled using truss element with bond effect. A special significance of diagonal reinforcement near opening was given to the shear wall with opening and an effective distribution of diagonal reinforcement was presented in order to give an ultimate strength increment as well as a crack control.

  • PDF

HTS 초전도 테이프의 기계-전기적 특성 평가기술 (Evaluation Technology of Mechano-Electromagnetic Properties in HTS Superconducting Tapes for Practical Applications)

  • 신형섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 초전도 자성체 연구회
    • /
    • pp.17-22
    • /
    • 2003
  • HTS superconducting tapes are now commercially available for practical applications such as magnets and cables. Since superconductors in such applications are subjected to high mechanical loads that can significantly degrade the superconducting properties, mechanical properties and the strain tolerance known as the strain effect on superconducting properties are needed to be estimated for developing superconducting devices. The progress in technology achieved in the field of strain effect evaluation on the critical current of HTS tapes in various deformation modes is discussed in this study.

  • PDF

스페클 간섭법에 의한 Nd:YAG 레이저 용접부의 변형해석 (Strain Analysis of Nd:YAG Laser Welding Zone by Speckle Interferometry)

  • 김경석;김성식;정승택;김종수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.85-89
    • /
    • 2002
  • This paper used the Laser Speckle Interferometry to present the strain analysis of Nd:YAG Laser welding zone. Previous TIG welding to sheet plate, which welds only high-skilled engineer, produces residual stress nearby welding zone due to thermal effect. However, Laser welding makes sheet pate welding easy and thermal effect minimum. Thermal effect zone is measured by strain analysis of the laser-welding zone by ESPI under tensile testing of sheet plate welded by Nd:YAG laser. The ESPI results, which compared with strain gage method, are agreed within error 3 %.

  • PDF

다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열 해석 (Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function)

  • 곽효경;송종영;김한수
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.69-84
    • /
    • 2002
  • 본 논문에서는 축방향 인장 부재의 균열거동과 철근콘크리트 부재의 인장강화현상을 고려하기 위한 새로운 해석적 기법을 제시하였다 균열 후 거동 규명을 위하여 부착응력-슬립의 관계나 부탁 응력의 분포를 가정하는 기존의 해석방법과는 달리, 철근과 콘크리트의 변형률 분포 함수를 다항식으로 가정하여, 이를 바탕으로 일축 인장부재의 균열 해석 기법을 구성하였다. 제시한 균열 해석모델은 기존의 해석기법과 비교하여, 철근콘크리트 구조물의 유한요소해석을 위한 균열 후의 평균 응력-변형률 관계를 정의하거나, 부재의 길이방향으로 철근과 콘크리트가 분담하는 하중 및 슬립량 산정시 매우 효율적이다. 제안된 모델을 이용하여 얻어진 균열하중과 보강철근의 신장률 값을 다른 해석기법 및 실험값과 비교한 결과 만족할만한 정확도를 보여주었다.

ANALYSIS OF NECKING DEFORMATION AND FRACTURE CHARACTERISTICS OF IRRADIATED A533B RPV STEEL

  • Kim, Jin Weon;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.953-960
    • /
    • 2012
  • This paper reports the irradiation effect on the deformation behavior and tensile fracture properties of A533B RPV steel. An inverse identification technique using iterative finite element (FE) simulation was used to determine those properties from tensile data for the A533B RPV steel irradiated at 65 to $100^{\circ}C$ and deformed at room temperature. FE simulation revealed that the plastic instability at yield followed by softening for higher doses was related to the occurrence of localized necking immediately after yielding. The strain-hardening rate in the equivalent true stress-true strain relationship was still positive during the necking deformation. The tensile fracture stress was less dependent on the irradiation dose, whereas the tensile fracture strain and fracture energy decreased with increasing dose level up to 0.1 dpa and then became saturated. However, the tensile fracture strain and fracture energy still remained high after high-dose irradiation, which is associated with a large amount of ductility during the necking deformation for irradiated A533B RPV steel.

Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load

  • Alazwari, Mashhour A.;Esen, Ismail;Abdelrahman, Alaa A.;Abdraboh, Azza M.;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • 제12권3호
    • /
    • pp.231-251
    • /
    • 2022
  • Dynamic behavior of temperature-dependent Reddy functionally graded (RFG) nanobeam subjected to thermomagnetic effects under the action of moving point load is carried out in the present work. Both symmetric and sigmoid functionally graded material distributions throughout the beam thickness are considered. To consider the significance of strain-stress gradient field, a material length scale parameter (LSP) is introduced while the significance of nonlocal elastic stress field is considered by introducing a nonlocal parameter (NP). In the framework of the nonlocal strain gradient theory (NSGT), the dynamic equations of motion are derived through Hamilton's principle. Navier approach is employed to solve the resulting equations of motion of the functionally graded (FG) nanoscale beam. The developed model is verified and compared with the available previous results and good agreement is observed. Effects of through-thickness variation of FG material distribution, beam aspect ratio, temperature variation, and magnetic field as well as the size-dependent parameters on the dynamic behavior are investigated. Introduction of the magnetic effect creates a hardening effect; therefore, higher values of natural frequencies are obtained while smaller values of the transverse deflections are produced. The obtained results can be useful as reference solutions for future dynamic and control analysis of FG nanobeams reinforced nanocomposites under thermomagnetic effects.