• Title/Summary/Keyword: stress/strain effect

Search Result 1,389, Processing Time 0.028 seconds

Study on the Strain-Rate Effect using Elastoplastic-Viscoplastic Constitutive Model. (점탄소성 구성모델을 이용한 변형을 속도의 영향에 관한 연구)

  • Lee, Ki-Sun;Kim, Dae-Kyu;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.327-334
    • /
    • 2000
  • 응력-변형률 관계의 모델링에 있어서 creep, stress relaxation, strain rate effect 등의 묘사는 중요한 지반거동중의 하나인 시간 의존적 거동의 simulation은 있어서 대단히 중요한 요소라 할 수 있다. 특히 지반은 변형률 속도에 대하여 때로는 매우 다른 거동 특성을 보이기 때문에 지반의 모델링에 있어서 변형율 속도를 고려한 구성방정식의 제시는 큰 비중을 차지한다 하겠다. 본 연구에서는 변형율에 따라 변화하는 지반의 거동특성을 보다 현실에 가깝게 묘사하기 위한 구성모델을 제시하였다. 이를 위하여 Bounding Surface Model의 점탄소성 부분을 Perzyna(1966)와 Adachi and Oka(1982)의 구성방정식 이론을 이용하여 발전시켰다. 제안된 구성모델은 기존의 모델에 비하여 다양한 변형율 속도에 적용할 수 있는 모델 정수를 비교적 간단히 결정할 수 있다는 장점이 있으며, 변형율 속도의 영향뿐 아니라 creep, stress relaxation등의 현상도 잘 simulation 할 수 있다. 본 모델은 후에 엄격히 실시되는 실내시험을 통하여 검증될 예정이다.

  • PDF

An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes (콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

Mechanical Properties of Aluminium Alloy with Cellular Structure. (미세기공 알루미늄 소재의 기계적 성질)

  • 윤성원;이승후;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.695-698
    • /
    • 2002
  • Induction heating process is one of the most efficient heating process in terms of temperature control accuracy and heating time saving. In the past study, fabrication process of cellular 6061 alloys by powder metallurgical route and induction heating process was studied. To supplement the framing conditions that studied in past study, effect of induction heating capacity and holding time at foaming temperature were investigated. Under the achieved framing conditions, teamed 6061 alloys were fabricated for variation of foaming temperature, and porosities(%)-foaming temperature curves were obtained by try-error experimental method. Uniaxial compression tests were performed to investigate the relationship between porosities(%) and stress-strain curves of framed 6061 alloy. Also, energy absorption capacity and efficiency were calculated from stress-strain curves to investigated. Moreover, dependence of plateau stress on strain rate was investigated in case of cellular 6061 alloy with low porosities(%)

  • PDF

Effect of aggregate type on heated self-compacting concrete

  • Fathi, Hamoon;Lameie, Tina
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • In this study, two types of aggregate were used for making self-compacting concrete. Standard cubic specimens were exposed to different temperatures. Seventy-two standard cylindrical specimens ($150{\times}300mm$) and Seventy-two cubic specimens (150 mm) were tested. Compressive strengths of the manufactured specimens at $23^{\circ}C$ were about 33 MPa to 40 MPa. The variable parameters among the self-compacting concrete specimens were of sand stone type. The specimens were exposed to 23, 100, 200, 400, 600, and $800^{\circ}C$ and their mechanical specifications were controlled. The heated specimens were subjected to the unconfined compression test with a quasi-static loading rate. The corresponding stress-strain curves and modulus of elasticity were compared. The results showed that, at higher temperatures, Scoria aggregate showed less sensitivity than ordinary aggregate. The concrete made with Scoria aggregate exhibited less strain. The heated self-compacting concrete had similar slopes before and after the peak. In fact, increasing heat produced gradual symmetrical stress-strain diagram span.

Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites

  • Fattahi, A.M.;Safaei, Babak;Qin, Zhaoye;Chu, Fulei
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.177-187
    • /
    • 2021
  • The effect of nanoparticle volume fraction on the elastic properties of a polymer-based nanocomposite was experimentally investigated and the obtained results were compared with various existing theoretical models. The nanocomposite was consisted of high density polyethylene (HDPE) as polymeric matrix and 0, 0.5, 1 and 1.5 wt.% multi walled carbon nanotubes (MWCNTs) prepared using twin screw extruder and injection molding technique. Nanocomposite samples were molded in injection apparatus according to ASTM-D638 standard. Therefore, in addition to morphological investigations of the samples, tensile tests at ambient temperature were performed on each sample and stress-strain plots, elastic moduli, Poisson's ratios, and strain energies of volume units were extracted from primary strain test results. Tensile test results demonstrated that 1 wt.% nanoparticles presented the best reinforcement behavior in HDPE-MWCNT nanocomposites. Due to the agglomeration of nanoparticles at above 1 wt.%, Young's modulus, yielding stress, fracture stress, and fracture energy were decreased and Poisson's ratio and failure strain were increased.

Confinement effect on the behavior factor of dual reinforced concrete moment-resisting systems with shear walls

  • Alireza Habibi;Mehdi Izadpanah;Yaser Rahmani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.781-791
    • /
    • 2023
  • Lateral pressure plays a significant role in the stress-strain relationship of compressed concrete. Concrete's internal cracking resistance, ultimate strain, and axial strength are improved by confinement. This phenomenon influences the nonlinear behavior of reinforced concrete columns. Utilizing behavior factors to predict the nonlinear seismic responses of structures is prevalent in seismic codes, and this factor plays a vital role in the seismic responses of structures. This study aims to evaluate the confining action on the behavior factor of reinforced concrete moment resisting frames (RCMRFs) with shear walls (SWRCMRFs). To this end, a diverse range of mid-rise SW-RCMRFs was initially designed based on the Iranian national building code criteria. Second, the stress-strain curve of each element was modeled twice, both with and without the confinement phenomenon. Each frame was then subjected to pushover analysis. Finally, the analytical behavior factors of these frames were computed and compared to the Iranian seismic code behavior factor. The results demonstrate that confining action increased the behavior factors of SW-RCMRFs by 7-12%.

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

Analytical Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 2) - (동적하중하에서의 강도적 불균질재의 연성크랙 발생한계의 해석적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제 2 보) -)

  • ;Mitsuru Ohata;Masahito Mochizuki;;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.49-58
    • /
    • 2003
  • It has been well known that ductile fracture of steel is accelerated by triaxiality stresses. The characteristics of ductile crack initiation in steels are evaluate quantitatively using two-parameter criterion based on equivalent plastic strain and stress triaxiality. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameter, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on critical condition to initiate ductile crack using two-parameter. Then, the crack initiation testing were conducted under static and dynamic loading. To evaluate the stress/strain state in the specimens especially under dynamic loading, thermal elastic-plastic dynamic FE-analysis considering the temperature rise was used. The result showed that the critical global strain to initiate ductile fracture in specimens with strength mismatch under various loading rate cu be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mismatch and dynamic loading effects on stress/strain behavior.

Predicting the Nonlinear Behavior of Reinforced Concrete Membrane Elements Subjected to Reversed Cyclic Loading (반복하중을 받는 철근콘크리트 막요소의 비선형거동에 대한 예측)

  • 이정윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2002
  • The behaviors of the reinforced concrete membrane elements are expected by Navier's three principles of the mechanics of materials. The adopted cyclic stress-strain curves of concrete consist of seven different unloading and loading stages in the compressive zone and six other stages in the tensile zone. The curves took into account the softening of concrete that was influenced by the tensile strain in the perpendicular direction of cracks. The stress-strain relationships for steel bar embedded in concrete subjected to reversed cyclic forces considered the tension stiffening effect and Baushinger effect. The predicted results of the analysis based on Navier's principles were in good agreement with the observed shear stress-strain relationships as well as transverse and longitudinal strains.