XGY Fall ‘00 Kational Benfenence / Novemben 3~4, 2000 / Seaul / Karea

Study on the Strain-Rate Effect using Elastoplastic-Viscoplastic
Constitutive Model.
HEIAM FHRYUR O[22 HYE Ko Heof st o

Ki-Sun Lee, ©1714%, Dae-Kyu Kim, 27>, Woo-Jin Lee, ¢]-$-2%

Y Graduate Student, Dept. of Civil & Environmental Engineering, Korea University, iL®
W EERETR HAAAA

? Senior Researcher, Research Center for Disaster Prevention Science and Technology,
Korea University, Z#H 8tz 4 WA r|edTAE HAAdd+4

% Associate Professor, Dept. of Civil Engineering, Korea University
1Ay ERFAFET Rugy

N $H-HFE AAY =dH] oI creep, stress relaxation, strain rate effect
o] BAlE 8% AAFEY Y A 9FH A% simulatione 101X P3|
8% 828 ¥ § g}t 53 Ay WY E 450 distd "2 v$ g8 A% §A
Rol7] tEd Ayte] Rdgo] ojA HYE £ 8 TEF FAGAH A= & H)
& A g 3,

AT E Ay g i Mslsls ANy ASEAS B 4o A 85ANEH 9
F FARLE AASGrE. olF 99359 Bounding Surface Modeld] AggAA HEL
Perzyna(1966)9} Adachi and Oka(1982)¢] T4 o]&& o]&ste] dAANZY. Ags
TAEDL 7]&9 2do] vjdte] g HyYg x4 HELE F e 2 ALE ¥
A (dd AAE & QUvs FFol Jow, ML £59 JIFW ol} creep, stress
relaxations 9] A4 E & simulation ¥ F vl B 2de Fo ¢4A3] dAHE AUAF
€ B3l A5E Ao}

ofN do oy oft

Key Words : elastoplasticity, viscoplasticity, constitutive model, strain-rate effect,
bounding surface model

1. Introduction

Soils generally exhibit time-dependent behavior. Understanding the stress
-strain—time behavior of soils is essential for geotechnical engineering associated with
the design and construction of foundations, slopes, tunnels, and other all geotechnical
structures. Especially, in cohesive soils, time-dependent behavior, mainly related to the
response of excess pore water pressure, becomes very important issue of the rapid or
long term stability and deformation prediction. Cohesive soils show such time-dependent
behaviors as creep, stress relaxation, and strain rate effect with respect to strength,
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stiffness, and deformation characteristics in addition to the dissipation of excess pore
water pressure. This study focuses on the strain rate effect in cohesive soils.

The engineering properties of cohesive soils depend to a great extent on the rate of
application of stress, which is called strain rate effect. For example, it is a well known
fact that the undrained strength of saturated clays significantly increases with the
increase in strain rate. In theoretical analysis, however, elastoplastic theory can not alone
account for the time-dependent behavior of cohesive soils; therefore, many approaches,
such as rheological model by applying Eyring’s structural viscosity(Murayama and
Shibata,1964), have been made to properly explain the time-dependent bahavior. Kaliakin
and dafalias(1990a) proposed a generalized elastoplastic-viscoplastic model for cohesive
soils in the frame of the bounding surface concept. In the model, creep behavior was
relatively well simulated. The simulation of strain rate effect, however, still maybe in
doubt; furthermore, the determination of many model parameters, that is very important
in the practical use of the model, needs a extremely laborious and time-consuming
work(Dafalias, Y. F. and Herrmann, L. R.,1986).

In this study, the viscoplastic part of the bounding surface model proposed by
Kaliakin and dafalias(1990a) was modified and reorganized for the better simulation of
strain rate effect in cohesive soils. The method regarding the simpler determination and
proper use of the model parameters were studied as well. The mathematical derivation
of the model and the study of the model parameters were based on Adachi and
Oka(1982) and Adachi and Okano(1974). The concept, basic theory, and derivations of
the model are presented in the following sections, and the model will be later verified
and investigated through the result of well-calibrated laboratory tests.

2. Time Dependent Bounding Surface Model
2.1 Concept of Bounding Surface Model

The general features of the bounding surface concept are that it allows the plastic
deformation to occur for stress states within the bounding surface. The material state is
defined in terms of the stress tensor o and proper inelastic internal variables g» which
include proper measures of inelastic deformation. The bounding surface in stress space
is then defined analytically by

F(oj g.)=0 1

The actual stress point ¢y always lies within or on the surface. To each stress

point o; , a unique image stress point o is assigned by a properly defined mapping
rule. Analytically, the radial mapping rule is expressed by

oi=blo;—a)+ay ()

Within the radial mapping model, a second "’image" stress 7y on the boundary of

the elastic nucleus is defined in addition to ¢ The Euclidean distance between ¢ and

7 is presented as & and is used to define the concept of a normalized over stress

—~
7

- 328 -



N
do= 7 bs—=1

1 (3)

2.2 General Elastoplastic-Viscoplastic Equation

Assuming small deformation and rotations, the strain rate can be decomposed into
an elastic and an inelastic part, the later consisting a delayed(viscoplastic) and an
instantaneous(plastic) part. Analytically these are expressed by

v

(4)

Concerning the each elastic, plastic and viscoplasic response and Using the general

e i e - p .
€ 4= Eif+ E; = 51’j+ E,'/+ € i

function of the state, defined at previous work(Perzyna,1966), above expression can be
refomed as

€5=Cuu Ou +(O> R;*+<L> R’ (5)
where Cii represents the fourth order tensor of elastic compliance, & is the proper
continuous scalar function of the overstress and L is the scalar loading index.

According to these equations, the viscoplastic contribution enters the constitutive
relations through the continuous scalar overstress function @. Although more elaborate
form of @ have been preposed(Perzyna,1966), the following expressions, which have
been found to be quite suitable for predicting the time dependent response of several
geologic materials(Katona,1984), are used in the current development.

- —117 exp(J/ND(A5) " ©6)

where I and ] are invariants of stress tensors 4oy as previous defined and

N= M/(3V3). M is a slope of critical state line.

2.3 Specific Forms of Bounding Surface
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Fig. 1. Schematic Illustration of the composite form of the bounding surface in
stress invariants space(Kaliakin and Dafalias, 1990a).
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The definition of the bounding surface may assume many particular forms provided
it satisfied certain requirements. Concerning the ideas of critical state soil mechanics, a
specific form of the surface consisting of two ellipses and a hyperbola with continuous
tangents at their connecting points was developed(Dafalias, Y. F. and Herrmann, L.
R.,1986). These composite surface in stress invariant surface, along with associated

parameters, is shown in Fig. 1.
3. Development of the Constitutive Relations

3.1 Derivation of Constitutive Equations

We define the static equilibrium state as a state at which deviatoric strain rate
components é,j as well as volumetric strain rate o becomes zero. Therefore, any

deformation processes with definite strain rate are regarded as in non-eqilibrium state,
namely, in dynamic state.

Perzyna(1963) pointed out that the difference of the dynamic and static behaviors of
materials occurred due to the strain rate sensitivity of the materials and defined this
rate sensitive behaviors as viscoplastic. Then, he assumed the existence of the static

yield function as follows,
Flo; e =Roy e;)k=1 (7
Where k, is the work hardening parameter.
By using Drucker’s postulate(1959), Perzyna(1966) proposed the following flow rule

for viscoplastic deformation in a simple case of infinitesimal strain field

e = _of
e =< OFY 57 (8)

In the equation, the symbol < @(F)) is defined as

0 for F<(
O(F) for F>0

In order to construct constitute equations, we have to assign the yield function.

CO(F)y = { ©)

According to the original critical state energy theory(Roscoe et al., 1963), the following
static yield function is assumed to be valid.

f=V20,9/M" 6,/ P+Ino, =k, (10)
where V 2J,=V S;S7# is the second invaliant of deviatoric stress Sy, M'is defined as

the value of stress ratio V 2/,/0,, at the critical state and the superscript (s) denotes

the values at the static equilibrium states.

The strain-hardening parameter ks is assumed to be given by In o/, namely, om’
represents strain-hardening effect in the change of stress state from om” =0 to om” =0
my’. Thus we define
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ki=Ino,, (11)
The dynamic yield function f; should be the same functional form of f; because F=0
expresses the statical yield condition. f; is express as

fd=V2]2/M* O'm"}'an'm,:kd 12)
where Kq¢ , in the same way as the static strain-hardening parameter ks, is
ke=lno,, @ (13)

Fig. 2 is a schematic diagram of the static and dynamic yield surface. In the figure,
P{¥ is a dynamic state at the end of one day isotropic consolidation under prescribed
(s) (d) .

with

same strain-hardening, namely in the same inelastic volumetric strain state, and lies on

pressure dmyi’(d) . On the other hand, P;~ is the corresponding static state to P
the static isotropic consolidation line to which attained by infinite time duration of
isotropic consolidation. The state path P,-(d)—>P(d) represents a shear deformation process
with an inelastic strain rate. The state path P{Y-p ¥ shows the increases of pore
water pressure when taking back to undrained condition after the end of one day
consolidation and the path P{Y—p.¥ represents the secondary consolidation (delayed

compression)
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Fig. 2. Schematic diagram of both static and dynamic surface
(Adachi and Oka, 1982).

Taking into account the elastic stress-strain relations, we obtain the following

constitutive equations for normally consolidated clays from Eq. (8) and (12).

. __._l_ . x .O'm, afd
& ;= 2% S,‘j‘*‘ 3(1+€) o_m: 85]'+ @(F) ao_ij_,
1 X 6"1’ . 1 Sij

1 s_vaJ
T (D(F)[M = ]a,-,.

where G is the elastic shear modulus, x is swelling index, e is void ratio and & is

Kronecker’s delta.
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According to the outcome of the previous works (Adachi and Okano 1974; Oka, 1979),
the function form of @(F) in Eq. (14) is assumed to be follows

O(F)=coexplm (0 my @/6, ] (15)
by substituting both dynamic and static yield function of Eq. (10) and (12) into Egs

(14), O(F) is rewritten as follows
[ V2l . VanR® »
¢(F)=c0exp{m[—]-u—,.—62;+ln O m _W—mom ()]} (16)

3.2 Relationship between Stress Ratio and Strain Rate

Since the volume change is negligible under undrained condition, i.e., ewm=0, we

obtain the relationship between mean effective stress ¢, and inelastic volumetric strain

»? from Eq.(13)

17

Om

. o X b-m’ ]_ * _ 2]2 —

Fig.4 shows this fact schematically. Namely, the inelastic volumetric strain v? are same

at both stress states represented as P; and P: lying on two different stress paths which

. . (¢)) : 2 . . .
correspond to strain rates €11 and sn( ), respectively, as shown in Fig. 3.

ne=,"33_/:"

et ot e e e e e

Fig. 3. The same inelastic volumetric strain (same strain-hardening) states on
different stress path (Adachi and Oka, 1982).

Under undrained conditions, the total strain rate component e is ‘equivalent é,;

because Eq.(16) is always satisfied.

L o(p)—i (18)

fu= eym et NCT
11. y 2G M* O 2]2

We continue to discuss the problem in a simple case of conventional axisymmetric

triaxial compression, ie., ¢ ;>0¢ 2= ¢ 3. Under this specific condition, the following

relations are reduced

Su=2/3(c,—03), V2J,=V2/3(c,—03), en=en=2/3(e;—€y)
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Using these relations Eq. (15) results in as follows

. __Si, V23
eEn= 2G + M* o_m, @(F) (19)
(s)
— A q o 4aq r (s)
O(F) coexp{m[Mom,-l-lnam Mo, @ Ino,, ]] (20)
where g=(0;—03) and M=V 3/2M".
Assuming €= € ?  namely elastic shear strain rate en’= S$,/2G to be

negligible, the nest relation is obtained from Eqs(20) and (21) by comparing the state Pi
and P2 shown in Fig. 4.

In ( énm/ 'EH(Z))Z—%XV2]2(1)/Gm,_V2]2(2)/0m’ (21)

where the superscripts (1) and (2) correspond to the states P; and Pz

If the material properties such as m and M can be find properly, we obtain the
different deviatoric stress invariant value at the different strain rate through Eq. (21).
Consequently, the values of the deviatoric stress invaliants in overstress function(Eq.
(6)) can be easily obtained by above equations with the various strain rate state.

4. Determination of Model Parameter Values

The current bounding surface formation requires eighteen separate model
parameters. These parameters include fourteen parameters associated with the
elastoplasic response and four parameters which defined the viscoplastic response. The
value of all the parameters fall within fairly narrow ranges. Furthermore, the values of
several parameters can be determined from standard soil mechanics parameters(Kaliakin
and Dafalias, 1991). In addition to these bounding surface model parameters, we need

one material parameters for the developed viscoplastic constitute equations(Eq. 21)

1= 196 KN/n?, e=0.76
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Fig. 5. Relationship between the stress ratio and logarithm of strain rate
(Adachi and Oka, 1982).

Fig. 5. clearly shows that the linear relationship between the logarithm of strain
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rate &5 and the stress ratio ¢/ o, as an equi-inelastic volumetric strain rate. Thus,

the parameter m’ can be determined from the slope of equi-inelastic volumetric strain

line obtained from few triaxial test perfomed at varied strain rate test.

5. Summary and Conclusions

The bounding surface model proposed by Kaliakin and Dafalias(1990a) successfully
simulated the time-dependent behavior of cohesive soils, which is related to creep, stress
relaxation and strain rate effect. However, determining the parameter needs an elaborate
work for the prediction of the influence of strain rate effect. As the strain rate changes,
all eighteen parameter should be altered.

Time dependent behavior of cohesive soils can be simulated using viscoplastic
models. In the further study, using the relationship between stress invariants and strain
rate which was postulated by Adachi and Oka(1982), we will evolve the viscoplastic
part in the constitutive equation of the model and numerically implement this work.
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