• Title/Summary/Keyword: stress/strain effect

Search Result 1,395, Processing Time 0.032 seconds

Mechanical behavior of the composite curved laminates in practical applications

  • Liu, Lonquan;Zhang, Junqi;Wang, Hai;Guan, Zhongwei
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1095-1113
    • /
    • 2015
  • In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about $29^{\circ}$ along the circumferential direction. It was also found that the stacking sequence and the thickness have significant influences on both the load carrying capacity and the stiffness of the laminates. However, the thickness effect is less than that on the curved aluminum plate.

Effects of Load Carrying Capacity with Method of Application of Prestress on Long-Span Temporary Bridges (장지간 가설교량에서 프리스트레스의 도입방법과 텐던배치에 따른 내하력의 영향)

  • Sim, Jai-Hyun;Park, Jeong-Ung;Park, Kil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1275-1280
    • /
    • 2009
  • In recent bridge design, studies on application of external prestress have actively been conducted. When prestress is applied to steel structures, the limit value of elastic strain with large load increases with reduction of steels, this method is economic in cost. According to study by Brodka (1969), steel plate bridges with prestress has an effect on cost saving of about 15% compared with structures without prestress. For that reason, our country recently adopted this method in construction of temporary bridges and various engineering technologies have been developed which made stress correction, droop correction and long-span construction possible with relatively small cross sections. This study verifies the method of application of prestress in temporary steel structures, the influence of high-strength tendon arrangement and the effects of composite structures of steel plates and high-strength tendons based on existing method.

The Evaluation of Custom Foot Orthotics for Injury Prevention of Joggers (달리기 동호인들의 상해예방을 위한 맞춤형 발 보장구의 평가연구)

  • Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2006
  • The purpose of this study was to examine the effect of foot orthotics on the overall comfort and muscle activity during running. The subjects were 10 members from the joggers' club which consisted of 2 women and 8 men. These individuals ran on the treadmill by 4.0m/s speed with and without the custom foot orthotics. The data concerning the overall comfort was collected by a questionairre that examined the overall comfort, heel cushioning, forefoot cushioning, medio-lateral control, arch height, heel cup fit, shoe heel width, forefoot width, and shoe length The MegaWin ver. 2.1(Mega Electronics lid, Ma. Finland) was used to gain electromyography signals of the muscle activity; Tibialis anterior, medial gastronemius, lateral gastronemius, vastus lateralis, vastus medialis, biceps femoris, and rectus femoris were measured. The results of the study were as follows. 1. During running the overall comfort was higher for the foot arthotic condition than the nonorthotic condition. Among the inquiries the overall comfort showed the biggest difference comparing the two conditions. and the shoe heel width showed the highest score for contort. 2 The muscle activity of the biceps femoris, and vastus lateralis in the stance period decreased. due to the foot orthotics. The muscle activity of the vastus medialis in the swing period also decreased and the muscle activity tibialis anterior in the stance and swing stance decreased as well During running, orthotics showed positive result in foot comfort. The foot comfort related to decreased stress, muscle activity, and foot arch strain. Overall comfort and the adequate decrease of muscle activity were associated with injury prevention and the best method to prevent injury semms to be the maintenance of foot comfort.

Preparation of Gel Polymer Electrolyte Membranes of Polyvinyl Alcohol and Poly (acrylic acid) for Zn Air Batteries (아연공기전지를 위한 Polyvinyl Alcohol과 Poly (acrylic acid)의 블랜드를 이용한 겔 고분자 전해질막의 제조)

  • Kim, Chanhoon;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.208-215
    • /
    • 2012
  • Gel polymer electrolyte membranes were prepared from blends of polyvinyl alcohol (PVA) and poly (acrylic acid) (PAA), by solution-cast technique. The PAA content in the blend varied from 30 to 80 wt%. With the gel polymer electrolyte membranes, Zn air batteries were fabricated. The gel polymer electrolyte membranes were characterized by means of stress-strain test, impedance test. The Zn air batteries were tested by current interrupt method and galvanostatic discharge method. The tensile strength and tensile modulus decreased with increasing PAA content in the gel polymer electrolyte membrane. On the other hand, the ionic conductivity increased with increasing PAA content. The effect of ionic conductivity trend of the gel polymer electrolyte membrane in the Zn air battery was confirmed through current interrupt method and galvanostatic discharge method experiments. The battery with higher PAA content gel polymer electrolyte membrane showed lower IR drop and higher discharge capacity.

Micromechanical Properties in Elastically Inhomogeneous Materials (Part II : Elastic Moduli and Thermal Expansion Coefficients) (탄성 불균질 재료의 미시역학거동 (Part II : 탄성계수 및 열팽창계수))

  • Gang, Chang-Seok;Hong, Seong-Gil;Wakashima, Kenji
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.372-377
    • /
    • 2001
  • A theory developed in Part I has been applied to calculate effective elastic and thermoelastic moduli of particle-strengthened, unidirectionally fiber-reinforced, and layered composites. For the unidirectional fiber composites the effect of fiber aspect ratio is taken into account. The analytical solutions obtained to the effective elastic moduli are compared with some of existing expressions and the following results are found. The effective bulk and shear moduli of the particle strengthened composites coincide with Korner's expressions, which correspond with the lower bounds of Hanshin and Shtrikman. The same expressions as the lower bounds of Hill and Hanshin are obtained for five independent moduli of the aligned continuous fiber composites, four of which coincide with Hanshin and Rosen's exact solutions for 'composite cylinder assemblage'.

  • PDF

Evaluation For Mechanical Properties of High strength Concrete by Stressed Test and Tressed Residual Strength Test (설계하중 사전재하 및 잔존강도 시험방법에 따른 고강도콘크리트의 고온특성평가 -제 1보, 강도특성을 중심으로-)

  • Lee, Tae-Gyu;Kim, Young-Sun;Lee, Eui-Bae;Park, Chan-Gyu;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.869-872
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to $700^{\circ}C$ on the material mechanical properties of high-strength concrete of 40, 60, 80MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. Or specimens are loaded to failure after 24hour cooling time. tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen.

  • PDF

Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights

  • Garcia, Victor J.;Marquez, Carmen O.;Zuniga-Suarez, Alonso R.;Zuniga-Torres, Berenice C.;Villalta-Granda, Luis J.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.343-363
    • /
    • 2017
  • The objective of this work was finding out the most advisable testing conditions for an effective and robust characterization of the tensile strength (TS) of concrete disks. The independent variables were the loading geometry, the angle subtended by the contact area, disk diameter and thickness, maximum aggregate size, and the sample compression strength (CS). The effect of the independent variables was studied in a three groups of experiments using a factorial design with two levels and four factors. The likeliest location where failure beginning was calculated using the equations that account for the stress-strain field developed within the disk. The theoretical outcome shows that for failure beginning at the geometric center of the sample, it is necessary for the contact angle in the loading setup to be larger than or equal to a threshold value. Nevertheless, the measured indirect tensile strength must be adjusted to get a close estimate of the uniaxial TS of the material. The correction depends on the loading geometry, and we got their mathematical expression and cross-validated them with the reported in the literature. The experimental results show that a loading geometry with a curved contact area, uniform load distribution over the contact area, loads projected parallel to one another within the disk, and a contact angle bigger of $12^{\circ}$ is the most advisable and robust setup for implementation of BT on concrete disks. This work provides a description of the BT carries on concrete disks and put forward a characterization technique to study costly samples of cement based material that have been enabled to display new and improved properties with nanomaterials.

Experimental Study on Seismic Performance of Beam-column Connections with High Strength Reinforcements (고장력 철근이 적용된 철근콘크리트 보-기둥 접합부 파괴모드에 대한 실험적 연구)

  • Kim, Dae-Hoon;Park, Aa-Ron;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.61-68
    • /
    • 2016
  • Behavior of RC(Reinforced-concrete) beam-column connections has been subjected to the earthquake loading has been determined by shear and attachment mechanism. However, since the shear and attachment are very fragile for cycle loadings. Through occurring plastic hinges at the beam, the column and the connection should remain elastic condition and the beam should dissipate the energy from the earthquake. This study was investigate on the seismic performance of 6 RC beam - column connections built with the high strength reinforcements (700MPa) based on design and detailing requirements in the ACI 318-05 Provision and KCI-07 appendix II. This is aimed to evaluate the effect of the high-strength reinforcements as used the beam-column connection members. The main comparisons were the seismic performance of the connections affect the seismic performance in terms of strength, stiffness and ductility, joint shear stress-strain. A total of 6 beam-column specimens were built with a 1/2 scale and subjected to the cyclic loadings. Main design considerations were the area of the longitudinal reinforcements of the beam and details of the beam-column joint designed based on the seismic code. Cyclic test results are given and recommendations for the usage of high strength reinforcements for the seismic design is provided.

Anisotropic Behavior of Compacted Decomposed Granite Soils (다짐 화강풍화토의 비등방성 거동특성)

  • Ham Tae-Gew;Hyodo Masayuki;Ahn Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.5-12
    • /
    • 2005
  • In order to investigate the strength and deformation anisotropy of compacted decomposed granite soils, a series of unsaturated-drained triaxial compression tests were performed. The sample used in the study was decomposed granite soil from Shimonoseki in Yamaguchi prefecture. The sample had three different angles of the axial (major principal) direction to the sedimentation plane (compaction plane), 0, 45 and 90 degrees. The compression strain of specimens subjected to isotropic compression was strongly influenced by the sedimentation angle. In addition, the time dependence was independent of the sedimentation angle in relation to the deformation behavior during the secondary compression process. The effect of the sedimentation angle on the triaxial compression strength and deformation was clear with low confining stress. Moreover, it was recognized that although the sedimentation angle and preparation methods were different, the dilatancy rate was relative to the increment of strength due to dilatancy. Therefore, it may be concluded that the compacted specimen has anisotropic mechanical properties similar to those of sand with initial fabric anisotropy.

Study on Prediction of Drying Shrinkage of Concrete using Shrinkage Reducing Agent (수축저감제를 사용한 콘크리트의 건조수축 예측에 관한 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2016
  • Shrinkage Reducing Agent(SRA) was developed in order to control drying shrinkage cracks in concrete, and the use of SRA is increasing since it can control drying shrinkage cracks and improve the quality of concrete structures. Although there are many types of prediction equations of drying shrinkage strain, there is no prediction method which can consider the effect of SRA up to the present. Therefore, it is impossible to predict the tensile stress generated by drying shrinkage of SRA concrete, and to investigate the quantitative serviceability limit state of SRA concrete. In this study, the drying shrinkage of SRA concrete was investigated by experiment and analysis in order to suggest the predictability of drying shrinkage of SRA concrete. As a result, AIJ model, ACI model, GL2000 model showed there was a correlation between the predicted values and the experimental values within the error range of ${\pm}10%$. However, CEB-FIP model and B3 model underestimated the experimental values.