• Title/Summary/Keyword: strengthening length

Search Result 186, Processing Time 0.02 seconds

Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface

  • Dogan, Ali Baran;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.437-453
    • /
    • 2010
  • CFRP has been widely used for strengthening reinforced concrete members in last decade. The strain transfer mechanism from concrete face to CFRP is a key factor for rigidity, ductility, energy dissipation and failure modes of concrete members. For these reasons, determination of the effective CFRP bonding length is the most crucial step to achieve effective and economical strengthening. In this paper, generalizations are made on effective bonding length by increasing the amount of test data. For this purpose, ANSYS software is employed, and an experimentally verified nonlinear finite element model is prepared. Special contact elements are utilized along the concrete-CFRP strip interface for investigating stress distribution, load-displacement behavior, and effective bonding length. Then results are compared with the experimental results. The finite element model found consistent results with the experimental findings.

Experimental Verification of Flexural Response for Strengthened R/C Beams by Stirrup Partial-Cutting Near Surface Mounted Using CFRP Plate (CFRP 플레이트 적용 스터럽 부분절단형 표면매립공법으로 보강된 철근콘크리트 보의 휨 거동에 대한 실험적 평가)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.671-679
    • /
    • 2008
  • The near surface mounted (NSM) FRP strengthening method has been conventionally applied for strengthening the deteriorated concrete structures. The NSM strengthening method, however, has been issued with the problem of limitation of the cutting depth which is usually considered as concrete cover depth. This may be related with degradation of bonding performance in long-term service state. To improve the debonding problem, in this study, the Stirrup partial-cutting NSM (SCNSM) strengthening method using CFRP plate was newly developed. SCNSM strengthening method can be effectively applied to the deteriorated concrete structure without any troubles of insufficient cutting depth. To experimentally verify the structural behavior, the flexural test of the concrete beam by using the SCNSM strengthening method was conducted with the test variable as the strengthening length (32%, 48%, 70%, 80%, 96% of span length). In the result of the test, the NSM and SCNSM strengthened specimen showed similar structural behavior with load-deflection, mode of failure. Additionally, there was no apparent structural degradation by the stirrup partial-cutting. Consequently, it was evaluated that the SCNSM strengthening method can be useful for seriously damaged concrete structures that is hard to apply the conventional NSM strengthening method for increasing the structural capacity.

The Effects of Back Muscle Stretching and Abdominal Muscle Strengthening Exercises on the Flexibility of Spinal Column of Normal Adults (정상 성인에 있어 배부근 스트레칭 운동과 복부근력강화 운동이 척주 유연성에 미치는 영향)

  • Gong, Won-Tae
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the effects of abdominal muscle strengthening exercises and back muscle stretching on the flexibility of spinal column. Methods: The subjects were consisted of healthy adults ( 28 of females, 32 males; mean aged 21.6) from 18 to 29. All subjects randomly assigned to the control group, back muscle stretching group, abdominal muscle strengthening exercises group. back muscle stretching group received back muscles stretching for 20 minutes, abdominal muscle strengthening exercises group received abdominal muscle strengthening exercises for 30 minutes per day and 3 times a week during 3 week period. Spine motion analyzer (Spinal Mouse) was used to measure the flexibility of spinal column. All measurement of each subjects were measured at pre-experiment, after 10 days, and after 21 days. Results: The results of this study were summarized below 1. The sacral tilt angle of the hip joint of control group, back muscle stretching group, abdominal strengthening exercises group was no significantly differences at pre-experiment and after 10 days(p>0.5), but differency of each group occurred at after 21 days(p<0.5). the sacral tilt angle significantly increased at the back muscle stretching group, abdominal muscle strengthening exercises group, rather than the control group. 2. The thoracic vertebral tilt angle of the control group, back muscle stretching group, abdominal muscle strengthening exercises group was no significantly differences at pre-experiment, after 10 days, after 21 days(p>0.5). 3. The lumbar vertebral tilt angle of the control group, back muscle stretching group, abdominal muscle strengthening exercises group was no significantly differences at pre-experiment, after 10 days, after 21 days(p>0.5). 4. The spinal tilt angle of control group, back muscle stretching group, abdominal muscle strengthening exercises group was no significantly differences at pre-experiment and after 10 days(p>0.5), but differency of each group occurred at after 21 days(p<0.5). the spinal tilt angle significantly increased at the back muscle stretching group, abdominal muscle strengthening exercises group, rather than the control group(p<0.5). 5. The length of the spinal column of control group, back muscle stretching group, abdominal muscle strengthening exercises group was no significantly differences at pre-experiment and after 10 days (p>0.5), but differency of each group occurred at after 21 days(p<0.5). the length of the spinal column significantly increased at the back muscle stretching group, abdominal muscle strengthening exercises group, rather than the control group(p<0.5). Conclusion: these data suggests that 3-week abdominal muscle strengthening exercises and back muscle stretching improved the flexibility of sacrum, spinal column, and also improved spinal column lengthening. Additional randomized controlled trials to more fully investigate treatment effects and factors that may mediate these effects are needed.

  • PDF

Stfuctural Behavior of Cracked Reinforced Concrete Beams Strengthened by Epoxy Bonded Steel Plates(EBSP) (에폭시 접착강판으로 보강된 철근콘크리트보의 구조적 거동에 관한 연구)

  • 김유식;류해준;최완철;홍기섭;신영수;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.25-29
    • /
    • 1994
  • A series of 6 reinforced concrete beams was tested to verify the effects of EBSP strengthened on cracked beams and to identify the various parameters affecting structure strengthening design(SSD). The parameters were the cross-sectional area of steel plates, the thickness of steel plates, and bond length of steel plates. In addition to these parameters, the effect of existing cracks on the strengthening was investigated. Test results show that EBSP is very effective and predictable for strengthening damaged structures. The results also show that the bond length of steel plates is the most important factor to develop ultimate load carrying capacities of strengthened beams. However, considerations in SSD should be given to assure the ductile failure at ultimate load such as the low ratio of thickness to the width of plates.

  • PDF

Numerical investigation of continuous hollow steel beam strengthened using CFRP

  • Keykha, Amir Hamzeh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.439-444
    • /
    • 2018
  • This paper presents a numerical study on the behavior of continuous hollow steel beam strengthened using carbon fiber reinforced polymers (CFRP). Most previous studies on the CFRP strengthening of steel beams have been carried out on the steel beams with simple boundary conditions. No independent study, to the researcher's knowledge, has studied on the CFRP strengthening of square hollow section (SHS) continuous steel beam. However, this study explored the effect of the use of adhesively bonded CFRP flexible sheets on the behavior of the continuous SHS steel beams. Finite Element Method (FEM) has been employed for modeling. Eleven specimens, ten of which were strengthened using CFRP sheets, were analyzed under different coverage length, the number of layers, and the location of CFRP composite. ANSYS software was used to analyze the SHS steel beams. The results showed that the coverage length, the number of layers, and the location of CFRP composite are effective in increasing the ultimate load capacity of the continuous SHS steel beams. Application of CFRP composite also caused the ductility increase some strengthened specimens.

An Experimental Study on the Flexural Behavior of RC beams Strengthened by CRFP-Grid (탄소격자섬유로 보강한 RC보의 휨거동에 관한 실험적 연구)

  • 조병완;김영진;태기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.845-850
    • /
    • 1998
  • Flexural tests on 3.0m reinfored concrete beams with epoxy and anchor bolt bonded CFRF-Grid reported in these tests. The selected experimental variables are concrete compressive strength, strengthening length and strengthening method. The effects of these variables in overall behavior are discussed. The results generally shown that the main flexural mode of strengthened beams is separation failure. The strengthening of the chipping by the tensile bar is really necessary in order to prevent CFRP-Grid from rip-off failure.

  • PDF

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.

Flexural behaviour of CFST members strengthened using CFRP composites

  • Sundarraja, M.C.;Prabhu, G. Ganesh
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.623-643
    • /
    • 2013
  • Concrete filled steel tubular members (CFST) become a popular choice for modern building construction due to their numerous structural benefits and at the same time aging of those structures and member deterioration are often reported. Therefore, actions like implement of new materials and strengthening techniques become essential to combat this problem. The application of carbon fibre reinforced polymer (CFRP) with concrete structures has been widely reported whereas researches related to strengthening of steel structures using fibre reinforced polymer (FRP) have been limited. The main objective of this study is to experimentally investigate the suitability of CFRP to strengthening of CFST members under flexure. There were three wrapping schemes such as Full wrapping at the bottom (fibre bonded throughout entire length of beam), U-wrapping (fibre bonded at the bottom throughout entire length and extended upto neutral axis) and Partial wrapping (fibre bonded in between loading points at the bottom) introduced. Beams strengthened by U-wrapping exhibited more enhancements in moment carrying capacity and stiffness compared to the beams strengthened by other wrapping schemes. The beams of partial wrapping exhibited delamination of fibre and were failed even before attaining the ultimate load of control beam. The test results showed that the presence of CFRP in the outer limits was significantly enhanced the moment carrying capacity and stiffness of the beam. Also, a non linear finite element model was developed using the software ANSYS 12.0 to validate the analytical results such as load-deformation and the corresponding failure modes.

Numerical investigation on the behavior of SHS steel frames strengthened using CFRP

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.561-568
    • /
    • 2017
  • Steel frames are widely used in steel structures. Exiting steel structures may be needed to strengthen for various reasons. Carbon Fiber Reinforced Polymers (CFRP) is one of the materials that are used to strengthen steel structures. Most studies on strengthening steel structures have been done on beams and steel columns. No independent study, to the researcher's knowledge, has studied the effect of CFRP strengthening on steel frames. This study explored the use of CFRP composite on retrofitting square hollow section (SHS) steel frames, using numerical investigations. Ten Finite Element (FE) models, which were strengthened with CFRP sheets, were analyzed under different coverage length, number of layers, and location of CFRP composite. One FE model without strengthening was analyzed as a control FE model to determine the increase of the ultimate load in the strengthened steel frames. ANSYS software was used to analyze the SHS steel frames. The results showed that the coverage length and the number of layers of CFRP composite have a significant effect on increasing the ultimate load of the SHS steel frames. The results also showed that the location of CFRP composite had no similar effect on increasing the ultimate load and the amount of mid span deflection of the SHS steel frames.

Numerical investigation of SHS steel beam-columns strengthened using CFRP composite

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.593-601
    • /
    • 2017
  • Carbon Fiber Reinforced Polymer (CFRP) is one of the materials used to strengthen steel structures. Most studies on strengthening steel structures have been done on steel beams and steel columns. No independent study, to the researcher's knowledge, has studied the effect of CFRP strengthening on steel beam-columns, and it seems that there is a lack of understanding on behavior of CFRP strengthening on steel beam-columns. However, this study explored the use of adhesively bonded CFRP flexible sheets on retrofitting square hollow section (SHS) steel beam-columns, using numerical investigations. Finite Element Method (FEM) was employed for modeling. To determine the ultimate load of SHS steel beam-columns, ten specimens, eight of which were strengthened with the different coverage length and with one and two CFRP layers, with two types of section (Type A and B) were analyzed. ANSYS was used to analyze the SHS steel beam-columns. The results showed that the CFRP composite had no similar effect on the slender and stocky SHS steel beam-columns. The results also showed that the coverage length, the number of layers, and the location of CFRP composites were effective in increasing the ultimate load of the SHS steel beam-columns.