• Title/Summary/Keyword: strengthened beam

Search Result 407, Processing Time 0.029 seconds

An innovative experimental method to upgrade performance of external weak RC joints using fused steel prop plus sheets

  • Kheyroddin, Ali;Khalili, Ali;Emami, Ebrahim;Sharbatdar, Mohammad K.
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.443-460
    • /
    • 2016
  • In this paper, the efficiency and effectiveness of two strengthening methods for upgrading behavior of the two external weak reinforced concrete (RC) beam-column joints were experimentally investigated under cyclic loading. Since two deficient external RC joints with reduced beam height and low strength concrete were strengthened using one-way steel prop and curbs with and without steel revival sheets on the beam. The cyclic performance of these strengthened specimens were compared with two another control external RC beam-column joints, one the standard RC joint that had not two mentioned deficiencies and another had both. Therefore, four half-scale RC joints were tested under cyclic loading.The experimental results showed that these innovative strengthening methods (RC joint with revival sheet specially) surmounted the deficiencies of weak RC joints and upgraded their performance and bearing capacity, stiffness degradation, energy absorption, up to those of standard RC joint. Also, results exhibited that the prop at joint acted as a fuse element due to adding steel revival sheets on the RC beam and showed better behavior than that of the specimen without steel revival sheets. In other words by stiffening of beam, the prop collected all damages due to cyclic loading at itself and acted as the first line of defense and prevented from sever damages at RC joint.

Development of New Strengthening Methods Preventing Early Delamination Failure of CFS (탄소섬유 보강공법의 조기 탈락 방지 공법 개발 연구)

  • 한만엽;백승덕
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • The strengthening method with CFS(Carbon Fiber Sheet) has some fatal defects that the beams strengthened with CFS is always failed far below its ultimated strenth due to rapid progress of horizontal delamination. The crack between beam and CFS are always started from the center of the beam and propagated to the end of the beam. The moment of the beam is always the largest in the middle of the beam, so is the tensile force of the CFS. The bumped surface of the CFS causes debonding force depending on the tensile force of CFS. In this study, two methods which delay early delamination are suggested and proved its validity, experimentally. The first method is using anchor bolt at the end of CFS, and the second method is using CFS wrap aroud at the center and the end of beam. The maximum load and ductility of the two methods are increased significantly. However, the maximum load is still far below the ultimate load. That's because the tensile strength of CFS is so large that its tensile strength can not be reached under normal loading condition. The ductility of the strengthened beam is improved more that twice before modiffication.

Load-Carrying Capacity Evaluation of the Composite Beam Strengthened by Multi-Stepwise Thermal Prestressing Method Using Cover-Plate (커버플레이트를 이용한 다단계 온도프리스트레싱으로 보강된 합성보의 하중-저항성능 분석)

  • Ahn, Jin-Hee;Jung, Chi-young;Choi, Kyu-Tae;Kim, Sang-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.159-169
    • /
    • 2009
  • In this study, static loading tests and numerical analyses of the composite beam strengthened by multi-stepwise thermal prestressing method were carried out to evaluate the prestressing effect of the thermal prestressing prestress and the sectional effect of the installed cover-plate on the increase in the load-carrying capacity of composit beam. From this study, the strengthening method using multi-stepwise thermal prestressing method (TPSM) can be applied to reduce the deflection of the composite beam as well as to strengthening the composite beam by inducing the prestress in case of the occurrence in the large deflection by the insufficiency of the section properties of the composite beam. because of the expectation of the increase in the yield load and the sectional properties of the composite beam.

Bond and Flexural Behavior of RC Beams Strengthened Using Ductile PET (고연성 PET 섬유로 보강된 철근콘크리트 보의 부착 및 휨 거동)

  • Park, Hye-Sun;Kim, So-Young;Lim, Myung-Kwan;Choi, Donguk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.30-39
    • /
    • 2016
  • An experimental study was performed to investigate flexural performance and bond characteristics of RC beams strengthened using ductile polyethylene terephthalate(PET) with low elastic modulus. Bond tests were planned and completed following CSA S806. Test variables were fiber type and fiber amount. Also, total of 8 RC beams was tested. Major test variables of the beam tests included section ductility(${\mu}=3.4$, 7.0), fiber type(CF, GF, PET) and amount of fiber strengthening. Moment-curvature analyses of the beam sections were also performed. In bond tests, the bond stress distribution as well as the maximum bond stress increased with increasing amount of PET. In case of 10 layers of PET, the effective bond length was 60 mm with the maximum and the average bond stress of 2.33 and 2.10 MPa, respectively. RC beam test results revealed that the moment capacity of the RC beams strengthened using PET 10 and 20 layers increased over the control beam with little reduction in ductility by fiber strengthening. All beams strengthened using PET resulted in ductile flexural failure without any sign of fiber debonding or fiber rupture. It was important to include the mechanical properties of adhesive in the moment-curvature analysis of PET-strengthened beam sections.

A Study on the Flexural Behavior of the RC Beams Strengthened with Aramid Fiber Sheets. (AFS로 보강된 RC 보의 휨거동에 관한 연구)

  • Kim Ki Deok;Cheung Jin Hwan;Kim Seong Do;Cho Baik Soon;Jang Jun Hwan.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • Recently the repair of damaged reinforced concrete members by the external bonding of fiber-reinforced polymer laminates has received considerable attention. This paper investigates the flexural behaviors of beam strengthened with Aramid fiber sheets(AFS), and attempts to evaluate the flexural strength of such RC beams by the use of nonlinear flexural analysis because the application of the KCI strength method to strengthened beam is somewhat limited and the failure strain of AFS is overestimated in particular cases.

  • PDF

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

An experimental study for bending behavior of RC beams strengthened with glass fiber sheet (유리 섬유시트로 보강된 실제크기 철근 콘크리트 보의 휨 거동에 대한 실험적 연구)

  • Kim, Seong-Do;Seong, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.274-280
    • /
    • 2008
  • To investigate the flexural behavior of real size RC beams strengthened with glass fiber sheets, 9 strengthened beams of real size are experimented and the results are compared with those of existing experimental studies. Experiments are considered glass fiber sheets, the number of fiber sheets, and the existence of U-wrap. By the results of experiments, the failure behavior and crack types of real size RC beams are almost equal to those of the small size RC beams, and the debonding and not the concrete cover delamination are occurred. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the ductility of real size RC beam is more decreased than that of the small size RC beam. For the strengthening method with glass fiber sheets of the real size RC beams, it can be confirmed that the finding a solution to the bonding problem is required

  • PDF

Structural Behavior of RC Beam Strengthened with Steel Plate (강판 휨보강된 철근 콘크리트보의 구조적 거동)

  • 오병환;강동욱;조재열;채성태;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.598-604
    • /
    • 1997
  • In recent years, strengthening by epoxy-bonded steel plates, carbon fiber sheets, aramid fiber sheets and so on, is spotlighted. Among them, the method using steel plates is most widely applied. Most studies have dealt with strengthening by epoxy-bonded steel plates. However the actual behavior of strengthened RC beams are not well established. Particularly, the studies on the separation load thar affects failure load of the beam are relatively insufficient. In this study, test parameters are the magnitude of pre-load, plate length, plate thickness, existence and spacing of anchor bolt, the number of plate layer and the height of side strengthening, 17reinforced concrete beams are strengthened by steel plates according to test parameters. Deflection, failure load, strains of reinforcing bar, concrete and plate are measured from tests(4 points loading). The failure mode, and separation load are analyzed from these measured data. The difference between Robert's theory and test results is discussed, and the prediction equation for separation load in the case of rip off is proposed.

  • PDF

Influence of temperature on the beams behavior strengthened by bonded composite plates

  • Bouazza, Mokhtar;Antar, Kamel;Amara, Khaled;Benyoucef, Samir;Bedia, El Abbes Adda
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.555-566
    • /
    • 2019
  • The purpose of this paper is to investigate the thermal effects on the behaviour reinforced-concrete beams strengthened by bonded angle-ply laminated composites laminates plate $[{\pm}{\theta}n/90m]_S$. Effects of number of $90^{\circ}$ layers and number of ${\pm}{\theta}$ layers on the distributions of interfacial stress in concrete beams reinforced with composite plates have also been studied. The present results represent a simple theoretical model to estimate shear and normal stresses. The effects the temperature, mechanical properties of the fibre orientation angle of the outer layers, the number of cross-ply layers, plate length of the strengthened beam region and adhesive layer thickness on the interfacial shear and normal stresses are investigated and discussed.

Seismic Retrofit of RC Exterior Beam-Column Joints Strengthened with CFRP (CFRP를 이용한 비내진 철근콘크리트 외부 보-기둥 접합부의 내진 보강)

  • Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong;Woo, Sung-Woo;Lee, Jung-Weon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.729-736
    • /
    • 2006
  • It has been shown that many Reinforced Concrete(RC) structures designed without seismic details have experienced brittle shear failures in the beam-column joint area and resulted in large permanent deformations and structural collapse. In this study, experimental investigations into the performance of exterior reinforced concrete beam-column joints strengthened with the carbon fiber-reinforced polymer(CFRP) under cyclic loading were presented. The CFRP has been applied by choosing different combinations and locations to determine the effective way to improve structural performances of joints. Eight beam-column joints were tested to investigate behaviors of each specimen under cyclic load and to compare performances of seismic retrofit. According to the experimental study, the retrofit strengthened with the CFRP provides significant improvements of flexural capacity and ductility of beam-column joints originally built without seismic details.