• 제목/요약/키워드: strength parameters

검색결과 3,619건 처리시간 0.035초

Effect of strain ratio variation on equivalent stress block parameters for normal weight high strength concrete

  • Kumar, Prabhat
    • Computers and Concrete
    • /
    • 제3권1호
    • /
    • pp.17-28
    • /
    • 2006
  • Replacement of actual stress distribution in a reinforced concrete (RC) flexural member with a simpler geometrical shape, which maintains magnitude and location of the resultant compressive force, is an acceptable conceptual trick. This concept was originally perfected for normal strength concrete. In recent years, high strength concrete (HSC) has been introduced and widely used in modern construction. The stress block parameters require updating to account for special features of HSC in the design of flexural members. In future, more varieties of concrete may be developed and a corresponding design procedure of RC flexural members will be required. The usual practice is to conduct large number of experiments on various sizes of specimen and then evolve an empirical relation. This paper presents a numerical procedure through which the stress block parameters can be numerically derived for a given strain ratio variation. The material model for concrete is presented and computational procedure is described. This procedure is illustrated with several variations of strain ratio. The advantages of numerical procedure are that it costs less and it can be used with new material models for any new variety of concrete.

노면의 강도 추정을 통한 자율 주행 로봇의 실시간 최적 주행 파라미터 예측 (Real-Time Prediction of Optimal Control Parameters for Mobile Robots based on Estimated Strength of Ground Surface)

  • 김자영;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.58-69
    • /
    • 2014
  • This paper proposes a method for predicting maximum friction coefficients and optimal slip ratios as optimal control parameters for traction control or slip control of autonomous mobile robots on rough terrain. This paper focuses on strength of ground surface which indicates different characteristics depending on material types on surface. Strength of various material types can be estimated by Willoughby sinkage model and by a developed testbed which can measure forces, velocities, and displacements generated by wheel-terrain interaction. Estimated strength is collaborated on building improved Brixius model with friction-slip data from experiments with the testbed over sand and grass material. Improved Brixius model covers widespread material types in outdoor environments on predicting friction-slip characteristics depending on strength of ground surface. Thus, a prediction model for obtaining optimal control parameters is derived by partial differentiation of the improved Brixius model with respect to slip. This prediction model can be applied to autonomous mobile robots and finally gives secure maneuverability on rough terrain. Proposed method is verified by various experiments under similar conditions with the ones for real outdoor robots.

Design and behaviour of double skin composite beams with novel enhanced C-channels

  • Yan, Jia-Bao;Guan, Huining;Wang, Tao
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.517-532
    • /
    • 2020
  • This paper firstly developed a new type of Double Skin Composite (DSC) beams using novel enhanced C-channels (ECs). The shear behaviour of novel ECs was firstly studied through two push-out tests. Eleven full-scale DSC beams with ECs (DSCB-ECs) were tested under four-point loading to study their ultimate strength behaviours, and the studied parameters were thickness of steel faceplate, spacing of ECs, shear span, and strength of concrete core. Test results showed that all the DSCB-ECs failed in flexure-governed mode, which confirmed the effective bonding of ECs. The working mechanisms of DSCB-ECs with different parameters were reported, analysed and discussed. The load-deflection (or strain) behaviour of DSCB-ECs were also detailed reported. The effects of studied parameters on ultimate strength behaviour of DSCB-ECs have been discussed and analysed. Including the experimental studies, this paper also developed theoretical models to predict the initial stiffness, elastic stiffness, cracking, yielding, and ultimate loads of DSCB-ECs. Validations of predictions against 11 test results proved the reasonable estimations of the developed theoretical models on those stiffness and strength indexes. Finally, conclusions were given based on these tests and analysis.

Shear strength model for reinforced concrete beam-column joints based on hybrid approach

  • Parate, Kanak N.;Kumar, Ratnesh
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.377-398
    • /
    • 2019
  • Behavior of RC beam-column joint is very complex as the composite material behaves differently in elastic and inelastic range. The approaches generally used for predicting joint shear strength are either based on theoretical, strut-and-tie or empirical methods. These approaches are incapable of predicting the accurate response of the joint for entire range of loading. In the present study a new generalized RC beam-column joint shear strength model based on hybrid approach i.e. combined strut-and-tie and empirical approach has been proposed. The contribution of governing parameters affecting the joint shear strength under compression has been derived from compressive strut approach whereas; the governing parameters active under tension has been extracted from empirical approach. The proposed model is applicable for various conditions such as, joints reinforced either with or without shear reinforcement, joints with wide beam or wide column, joints with transverse beams and slab, joints reinforced with X-bars, different anchorage of beam bar, and column subjected to various axial loading conditions. The joint shear strength prediction of the proposed model has been compared with 435 experimental results and with eleven popular models from literature. In comparison to other eleven models the prediction of the proposed model is found closest to the experimental results. Moreover, from statistical analysis of the results, the proposed model has the least coefficient of variation. The proposed model is simple in application and can be effectively used by designers.

혈암의 이방성을 고려한 비선형 강도정수 및 파괴규준식 산정 (Nonlinear Strength Parameters and Failure Characteristics of Anisotropy Rock - Shales)

  • 김영수;이재호;허노영;방인호;성언수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.713-720
    • /
    • 2000
  • The directional response of strength and deformation on the rocks acting by external loads is called by strength and deformability anisotropy, respectively. Peak strength and its failure criteria of anisotro rocks have been studied and reported. Many authors have investigated in detail the behavior of triaxial peak strength of anisotropic rocks(Jaeger 1960, McLamore & Gray 1967, Hoek & Brown 1980, Ramamurthy & Rao 1985). They concluded that the triaxial strength of anisotropic rocks varies according to the inclination of discontinuity in specimens. And, the minimun triaxial strength occurs in the specmen with 60° of inclination angle ; and specimens with 0° or 90° inclination have maximum triaxial strength. Based on the experimental result, the behavior triaxial strength is investigated. The triaxial compression tests due to the angle bedding plane have been conducted and the material constants, 'm' and 's', cohesion and angle of friction and nonlinear strength parameters to fit for the failure criterion were derived from the regression analysis. And, the experimental date are employed to examine three existing failure criteria for peak strength, provided by Jaeger, McLamore and Hoek & Brown and Ramamurthy & Rao. For a shale, the suitability of the failure criteiria of triaxial peak strength for anisotropic rocks is discussed.

  • PDF

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

중유동 콘크리트의 재료분리 경계 판단을 위한 레올로지 정수 범위 분석 (Analysis of Rheological Parameters for Determining Segregation of Mid-Range Workability Concrete)

  • 이유정;김영기;한동엽
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.142-143
    • /
    • 2021
  • The purpose of this study is to analyze the extent of the rheology parameters at the segregation boundary of mid-range workability concrete. In addition, it was intended to present the extent of the rheology parameters of the normal strength concrete with segregation resistance using the determination of segregation occurrence of concrete and the use of the rheology parameters. However, it was confirmed that segregation occurs even if the measured rheology parameters is in the range of the suggested rheology parameters. Therefore, it is determined that the conditions under which segregation occurs will provide fundamental data that can be rheological defined. Additional studies are also needed on the relationship between rheological parameters and segregation.

  • PDF

고강도 철근콘크리트 부재에서 철근의 장부작용에 대한 구조변수의 영향 (Influence of Structural Parameters on the Dowel Action of Reinforcing Bar in Reinforced High Strength concrete Members)

  • 최도수;신장호;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.350-355
    • /
    • 1994
  • This study is aimed at the experimental investigation of the influence of the structural parameters such as concrete cover, width of specimen and bar size on the dowel action of reinforcing bari in high strength concrete members. Based on the proper combination of these parameter, a total of 46 specimens has been cast for fc'= 500 ㎏/㎠ and another 46 specimens for fc'= 700 ㎏/㎠, and cured at the laboratory. Comparative analyses have been made for the parametric contribution to the dowel strength from the test results, and a regress equation has been suggested.

  • PDF

돌기형 지오멤브레인에 의한 전단 메카니즘에 관한 실험 연구 (Experimental Study on Shear Mechanism Caused by Textured Geomembrane)

  • 이석원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.57-68
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear mechanism of geomembrane/geotextile interfaces. The alternative roughness parameters which consider the direction of shearing are described. These directional parameters are compared with the existing roughness parameters, and the relationship between these directional and non-directional parameters are investigated. Then, the relationship between interface shear strength and surface roughness quantified at the interface is investigated. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

Parameter calibrations and application of micromechanical fracture models of structural steels

  • Liao, Fangfang;Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.153-174
    • /
    • 2012
  • Micromechanical facture models can be used to predict ductile fracture in steel structures. In order to calibrate the parameters in the micromechanical models for the largely used Q345 steel in China, uniaxial tensile tests, smooth notched tensile tests, cyclic notched bar tests, scanning electron microscope tests and finite element analyses were conducted in this paper. The test specimens were made from base metal, deposit metal and heat affected zone of Q345 steel to investigate crack initiation in welded steel connections. The calibrated parameters for the three different locations of Q345 steel were compared with that of the other seven varieties of structural steels. It indicates that the toughness index parameters in the stress modified critical strain (SMCS) model and the void growth model (VGM) are connected with ductility of the material but have no correlation with the yield strength, ultimate strength or the ratio of ultimate strength to yield strength. While the damage degraded parameters in the degraded significant plastic strain (DSPS) model and the cyclic void growth model (CVGM) and the characteristic length parameter are irrelevant with any properties of the material. The results of this paper can be applied to predict ductile fracture in welded steel connections.