• Title/Summary/Keyword: strength of resin denture base

Search Result 108, Processing Time 0.029 seconds

Bond strength of denture base resin repaired according to contamination (의치상 수리면 오염원에 따른 수지의 결합강도)

  • Jung, Kyung-Pung
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.71-79
    • /
    • 2003
  • The purpose of this study was to investigate bond strength of denture base resin repaired according to contamination. One commercial denture base resin and two different kinds of relines resin were tested; Lusiton 199(denture base resin), Vertex(reline resin) and TokusoRebase(repair resin). The specimens were processed according to the manufacturer's instructions to cured denture base resin(polymethylmethacrylate; PMMA) and reline resin. Bond strengths were examined by use of a three-point transverse flexural strength test. Data were analyzed with two-factor analysis of variance and Duncan's post-hoc test at $\alpha$=0.05. Generally, the bondstrength of heat-cured resin(Lusiton 199) was higher than the other resins. The contaminations produced an decrease in bond strength. Therefore the contamination, such as saliva or water must be avoided during the laboratory repair procedures.

  • PDF

The effect of denture cleansers on the bond strength of reline resin to denture base resin (의치 세정제가 의치상용 레진과 이장용 레진의 결합강도에 미치는 영향)

  • Choi, Esther;Han, Min-Su;Kwon, Eun-Ja
    • Journal of Technologic Dentistry
    • /
    • v.40 no.4
    • /
    • pp.225-230
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effect of denture cleansers on the flexural bond strength of heat curing denture base resin and reliners. Methods: The denture base resin was bonded to the reliners(vertex self curing, kooliner, rebase II) to make the specimen. The specimens were immersed in denture cleansers(Polident, Cleadent) and evaluated after 1week, 3week, 5weeks. After denture reliners were injected, flexural bond strength was measured. Results: The bond strength of denture base resin and vertex self curing resin as reliner was significantly decreased at 5 weeks in cleadent and polident(p<0.05). The bond strength of kooliner and rebase II was significantly decreased at 5 weeks in denture cleaners(p<0.05). Kooliner was significantly decreased at 3 and 5 weeks in polident and rebase II was significantly decreased at 3 and 5 weeks in all denture cleansers(p<0.05). Conclusion : The flexural strength between the denture base resin and the reliners decreased significantly as the treatment time increased.

THE EFFECT OF DENTURE CLEANSERS ON THE BOND STRENGTH AND THE SURFACE HARDNESS OF RELINE RESIN TO DENTURE BASE RESIN (의치 세정제가 의치상 레진과 이장용 레진의 결합강도와 표면경도에 미치는 영향)

  • Kim Kyea-Soon;Jeong Hoe-Yeol;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.493-502
    • /
    • 2003
  • Statement of problem : Removable partial denture and complete denture often require denture base relines to improve the fittness against tissue-bearing mucosa because of the gradual change in edentulous ridge contour and resorption of underlyng bony structure. Self-curing hard reline resins offers the immediate and relatively inexpensive means to be recondition the surface of denture base directly However weak bond between denture base resin and reline material can harbor bacteria, promote staining, or result in complete separation of the two materials. Purpose : The purpose of this study was to evaluate the effect of denture cleansers on bond strength and surface hardness of reline resin to denture base resin Denture base resin beams($60.0{\times}15.0{\times}3.0mm$) were made with Lucitone 199. Material and methods : 10mm section was removed from the center of each specimen. The samples were replaced in the molds and the space of l0mm sections were packed with Tokuso Rebase reline material. The specimens were immersed in denture cleansers (Polident, Cleadent) and were evaluated after 1 week, 2 weeks, and 4 weeks. The bond strength and surface hardness of self-curing hard reline materials to heat-curing denture base resin were measured using an UTM (universal testing machine). Results and conclusion : 1) There was no significant difference of usage, kind, and denture cleaner by application time on the bonding strength of self-curing hard reline resin to denture base resin. 2) There was no significant difference of usage, kind, and denture cleaner by application time on the surface hardness, but the surface hardness showed decreasing tendency, as the time of immersion was extended. 3) The failure modes of the specimens was initially adhesive failure and finally cohesive failure of self-curing hard reline resin.

THE EFFECTS OF THERMOCYCLING ON THE BOND STRENGTH BETWEEN COBALT-CHROMIUM ALLOY AND DENTURE BASE RESIN (Thermocycling이 Cobalt-Chromium 합금과 의치상 레진의 결합강도에 미치는 영향)

  • Lee, Su-Yeon;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.1
    • /
    • pp.38-49
    • /
    • 2000
  • The purpose of this study was to evaluate the effects of thermocycling on the shear bond strength of Co-Cr alloy to denture base resin. PMMA denture base resin such as heat-cured $Vertex-RS^{(R)}$, self-cured $Vertex-SC^{(R)}$ and 4-META denture base resin such as heat-cured $Meta-Dent^{(R)}$, self-cured $Meta-Fast^{(R)}$ was bonded to Co-Cr alloy. Samples were divided into 3 groups : no thermocycling group as control, thermocycling between $5^{\circ}C\;and\;55^{\circ}C$ with 15 second dwell time as group 1, thermocycling with 1 minute dwell time as group 2. The shear bond strength was measured and the interface between metal and resin was observed by SEM. The results were as follows. 1. The shear bond strength decreased significantly according to thermocycling and dwell time(P<0.001). 2. The bond strength of Co-Cr alloy and 4-META denture base resin was significantly higher than that of Co-Cr alloy and PMMA denture base resin(P<0.001) 3. In SEM, there was no gap in control group, but there was much and large gap in group 1, 2. The longer dwell times, the lower bond strength. PMMA denture base resin had more gap than 4-META denture base resin in the interface. These results revealed that thermocycling decreased the bond strength between Co-Cr alloy and denture base resin and dwell time of thermocycling changed the effect of thermocycling. The results suggested that oral temperature change affect the bond strength of prosthesis.

  • PDF

A Study of Bonding Strength of Repaired Resin Denture Base by Artificial Saliva Absorption (레진의치상 수리 시 인공타액 흡수도에 따른 결합강도 연구)

  • Kang, Myung-Ho;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.25-35
    • /
    • 2011
  • Purpose: There are some advantages of the acrylic resin denture base ; appropriate strength, volume safety, simple processing apparatus, and low cost. But, it have a weakness for fracture by intense pressure or shock. However, the repairs for resin denture base are possible using various materials and techniques. There is a few studies in repairs for resin denture base, but not clinical researches. And there is no studies in absorbed saliva into the region of fracture and bond strength. This study is to observe re-bond strength of resin denture base after repairing under saliva absorption. Methods: The samples were made of heat curing resin and the rectangular parallelepiped specimens which were 50mm long, 10mm wide and 3mm high. The four different groups immersed in the artificial saliva for 2 weeks were prepared, 1) no repaired control samples, 2) immediately repaired samples, 3) repaired samples after 1 day dry, and 4) repaired samples after 3 days dry. The prepared samples were repaired by two different curing materials, self curing resin and heat curing resin method. Each groups composed of 10 specimens were experimented with the three point bending tests for bonding strength measuring Results: There were under condition absorbed in the artificial saliva and repaired by self curing resin method, repaired specimens after 1 day and 3 days dry groups had higher values of bonding strengths than control group, and bonding strengths of immediately repaired samples were similar to those of control samples (p<0.05). There were under condition immersed in the artificial saliva and repaired by heat curing resin method, immediately repaired samples showed similar values to bonding strengths of control groups, and repaired samples after 1 day and 3 days dry groups were lower than those of control group (p>0.05). Conclusion: In this study, the repairs for resin denture base were remarkably high values of bonding strengths than those of the past, and showed that have stable bonding strengths independent of saliva absorption of denture base, so present repairs for resin denture base can be performed, regardless of saliva conditions.

Effect of chemical surface treatment on the flexural bond strength of heat curing denture base resin and reliners (화학적 표면처리가 열중합형 의치상 레진과 이장재간의 굴곡결합강도에 미치는 영향)

  • Choi, Esther;Han, Min-Soo;Kwon, Eun-Ja
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.219-227
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the effect of the chemical surface treatment on the flexural bond strength of heat curing denture base resin and reliners. Methods: Denture base resin surface was treated with MMA 95% and TEGDMA 5%, MMA 95% and silane coupling agent 5%, heat curing resin monomer. After denture reliners were injected, flexural bond strength was measured. Results: The repair resin of Vertex SC was higher than Lang, hard reliner of Kooliner was higher than Rebase. Soft reliner of Dura base and Coe-soft showed differently according to the surface treatment. The all chemical treatment groups on Vertex SC were significantly higher than control(p<0.05). In Lang group, 5% MPS treated group showed significantly higher flexural bond strength than others(p<0.05). In Kooliner group, all chemical treatment groups showed significantly higher than control(p<0.05). In Rebase group, the 5% MPS and the monomer denture base resin treated groups showed significantly higher than others(p<0.05). In Dura base group, 5% MPS treated group showed significantly higher flexural bond strength than others(p<0.05). In Coe-soft group, all treated groups were significantly higher than control group(p<0.05). Conclusion: TEGDMA, MPS, and the monomer of heat-cured denture base resin were effective to improve the bond strengths between denture base and denture relining materials. Especially, 5% MPS expected to strengthen effectively the bonding property of denture base and denture reliners within the results of this study.

Comparison of shear bond strengths of different types of denture teeth to different denture base resins

  • Prpic, Vladimir;Schauperl, Zdravko;Glavina, Domagoj;Catic, Amir;Cimic, Samir
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.376-382
    • /
    • 2020
  • PURPOSE. To determine the shear bond strengths of different denture base resins to different types of prefabricated teeth (acrylic, nanohybrid composite, and cross-linked) and denture teeth produced by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. MATERIALS AND METHODS. Prefabricated teeth and CAD/CAM (milled) denture teeth were divided into 10 groups and bonded to different denture base materials. Groups 1-3 comprised of different types of prefabricated teeth and cold-polymerized denture base resin; groups 4-6 comprised of different types of prefabricated teeth and heat-polymerized denture base resin; groups 7-9 comprised of different types of prefabricated teeth and CAD/CAM (milled) denture base resin; and group 10 comprised of milled denture teeth produced by CAD/CAM technology and CAD/CAM (milled) denture base resin. A universal testing machine was used to evaluate the shear bond strength for all specimens. One-way ANOVA and Tukey post-hoc test were used for analyzing the data (α=.05). RESULTS. The shear bond strengths of different groups ranged from 3.37 ± 2.14 MPa to 18.10 ± 2.68 MPa. Statistical analysis showed significant differences among the tested groups (P<.0001). Among different polymerization methods, the lowest values were determined in cold-polymerized resin.There was no significant difference between the shear bond strength values of heat-polymerized and CAD/CAM (milled) denture base resins. CONCLUSION. Different combinations of materials for removable denture base and denture teeth can affect their bond strength. Cold-polymerized resin should be avoided for attaching prefabricated teeth to a denture base. CAD/CAM (milled) and heat-polymerized denture base resins bonded to different types of prefabricated teeth show similar shear bond strength values.

Study on a Change of Mechanical Property of denture Resin by Carbon Fiber Filler Content (탄소섬유 첨가에 따른 의치상 레진의 탄성력 관찰)

  • Kim, Ho-Sung
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.165-169
    • /
    • 2014
  • Purpose: This study is a mechanical strength supplementation of denture base resin Polymethyl methacrylate (PMMA) is in general use for denture base resin of the partial and full denture, however, The polymerization process of PMMA is not stabilized. Because of compatibility problems, preceding studies were performed, which were enhancing mechanical strength(Camilo Machado 2007),(Ana M. 2008), addition filler to materials property(Ayse Mese, 2008), self curing method(Hiroshi Shimizu, 2008). Methods: The carbon fiber and polyacetal filler, reinforced the mechanical strength for improving the stability of denture base resin were supplemented to the self cured resin. The Modulus of elasticity and the restoring force were calculated by tensile test. Results: The strengths of the heat and self cured resin were respectively decreased and increased, when the filler was supplemented to the denture base resin and the modulus of elasticity of both heat and self cured resin were not increased, when the filler was supplemented to the denture base resin. Conclusion: The restoring forces of self cured resin containing 10% filler were increased, when the filler was supplemented to the denture base resin.

A comparison study on shear bond strength of 3D printed resin and conventional heat-cured denture base resin to denture relining materials (3D-프린팅 의치상 레진과 열중합 의치상 레진에서의 의치 첨상 재료 간의 전단결합강도 비교 연구)

  • Cho, Sung-Yoon;Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.232-243
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the shear bond strength of various 3D printed denture base resins and the conventional denture base resin to various denture relining materials. Materials and Methods: For denture base materials, a heatcured (Vertex RS) and two types of 3D printed DENTCA Denture base II, NextDentTM Base) were used. And 4 types denture relining materials (Tokuyama Rebase II fast, Kooliner, Denture Liner, Denture Liner, Lang Jet Denture Repair Kit) with different components were used. It was classified into 12 groups. Adhesion was performed between the resin base and the relining materials in accordance with ISO/TS 11405 standard. The shear bonding strength was measured, and then the adhesion interface was observed with a stereoscopic microscope and a scanning electron microscope. The fracture pattern was investigated through the analysis of the fragment. Results: In the 3D printed denture resin group, the shear bonding strength with relining materials was significantly lower than that of the heat-cured resin group (P < 0.05). The group of polymethyl methacrylate -based relining materials, high shear bonding strength was shown regardless of the type of denture. As for the fracture pattern, adhesive fracture appeared in most groups, and cohesive, mixed fracture appeared in some groups. Conclusion: The polymethyl methacrylate -based denture relining materials showed high shear bonding strength values compared to other denture relining materials. But, for direct methods, it is considered advantageous in terms of shear bonding strength to use a isobutyl methacrylate-based denture relining materials.

Effects of chemical surface treatment on the shear bond Strength of denture reliners and denture base resin (화학적 표면처리에 따른 의치상 레진과 이장재 간의 전단 결합강도)

  • Choi, Esther;Kwon, Eun-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5745-5751
    • /
    • 2013
  • The purpose of this study was to evaluate the effect of the surface treatment of MMA and TEGDMA concentration, silane coupling agent on the shear bond strength of denture base resin and denture reliners. Denture base resin surface was treated with MMA and TEGDMA concentration, silane coupling agent. After denture reliners were injected bond strength was measured. The results of MMA and TEGDMA concentration on the shear bond strength of Vertex self curing resin showed that the value of MMA 95% and TEGDMA 5%, MMA 90% and TEGDMA 10%, MMA 80% and TEGDMA 20% groups were higher than that of other group(P<0.05). MMA and TEGDMA concentration on the shear bond strength of Kooliner resin showed that the value of MMA 95% and TEGDMA 5%, MMA 90% and TEGDMA 10% were higher than that of other group(P<0.05). Silane coupling agent on the shear bond strength of Vertex self curing resin and Kooliner showed that the value of MMA 95% and silane coupling agent 5% groups was higher than that of other group(P<0.05). Therefore, we could conclude that appropriate chemical surface treatments are supposed to affect the bond of denture base resin and denture reliners.