• 제목/요약/키워드: strength of materials

검색결과 10,073건 처리시간 0.039초

AZ61 마그네슘 압출재의 압출 온도에 따른 기계적 특성 및 고주기 피로 특성 (Effect of Extrusion Temperature on Mechanical Properties and High-cycle Fatigue Properties of Extruded AZ61 Alloy)

  • 김예진;차재원;김영민;박성혁
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, a commercial AZ61 magnesium alloy is extruded at 300 ℃ and 400 ℃ and the microstructures, mechanical properties, and high-cycle fatigue properties of the extruded materials are investigated. Both extruded materials have a fully recrystallized microstructure with no Mg17Al12 precipitates. The average grain size and maximum basal texture intensity of the extruded material increase with increasing extrusion temperature. The material extruded at 400 ℃ (AZ61-400) has higher tensile yield strength and lower compressive yield strength than the material extruded at 300 ℃ (AZ61-300) because of the stronger basal texture of the former. Because of coarser grain size, the tensile elongation of AZ61-400 is lower than that of AZ61-300. Despite the differences in microstructures and tensile/compressive properties, the two extruded materials have the same fatigue strength of 110 MPa. This is because the finer grain size of AZ61-300 causes an increase in fatigue strength, but its weaker texture causes a decrease in fatigue strength. In both extruded materials, fatigue cracks initiate at the surface of fatigue specimens at all stress amplitudes tested.

마찰교반 홀 클린칭을 이용한 알루미늄과 고장력강의 접합에 관한 연구 (A Study on Joining of Aluminum and Advanced High Strength Steel Using Friction Stir Hole Clinching)

  • 고룡해;강길석;이경훈;김병민;고대철
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.348-355
    • /
    • 2017
  • In recent years, dissimilar materials such as aluminum, magnesium, titanium, and advanced high strength steel are widely used in automotive body due to environment concerns and fuel consumption. Therefore, joining technology is important for assembling components made of dissimilar materials. In this study, friction stir hole clinching (FSHC) was proposed as a new mechanical joining method to join dissimilar materials. This process stirs and heats the upper sheet, forming mechanical interlocking with the lower sheet. The feasibility of this FSHC process was verified by comparing cross-section of joint in FSHC and hole clinching process under the same processing condition. Taguchi method was also applied to the FSHC process to estimate the effect of process parameters on joint strength and obtain optimal combination of process parameters. Joint strength of FSHC with optimal process condition was compared to that of FSHC with initial process condition as well as that of hole clinching with optimal process condition. Results showed that the FSHC process was useful for joining dissimilar materials, even if the formability of materials was low.

Fused Deposition Modeling의 강도예측모델과 인터넷 서비스 (Strength Prediction Model and The Internet Service of Fused Deposition Modeling)

  • 백창일;추원식;이선영;안성훈
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.179-182
    • /
    • 2002
  • Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys' Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of plastic materials, and the parts made from FDM were often used as load-carrying elements. Because FDM deposits materials in about $300\mutextrm{m}$ thin filament with designated orientation, parts made from FDM show anisotropic material properties. This paper proposes an analytic model to predict the tensile strength of FDM parts. Applying the Classical Lamination Theory, which was developed for laminated composite materials, a computer code was implemented. Tsai-Wu failure criterion was added to the code to predict the failure of the FDM parts. The tensile strengths predicted by the analytic model were compared with experimental data. The data and prediction agreed reasonably well to prove the validity of the model. In addition, a web-based advisory service was developed to provide to strength prediction and design rules for FDM parts.

  • PDF

Predictions of curvature ductility factor of doubly reinforced concrete beams with high strength materials

  • Lee, Hyung-Joon
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.831-850
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures because of the benefits of the mechanical and durable properties. Generally, it is known that the ductility decreases with an increase in the strength of the materials. In the design of a reinforced concrete beam, both the flexural strength and ductility need to be considered. Especially, when a reinforced concrete structure may be subjected an earthquake, the members need to have a sufficient ductility. So, each design code has specified to provide a consistent level of minimum flexural ductility in seismic design of concrete structures. Therefore, it is necessary to assess accurately the ductility of the beam sections with high strength materials in order to ensure the ductility requirement in design. In this study, the effects of concrete strength, yield strength of reinforcement steel and amount of reinforcement including compression reinforcement on the complete moment-curvature behavior and the curvature ductility factor of doubly reinforcement concrete beam sections have been evaluated and a newly prediction formula for curvature ductility factor of doubly RC beam sections has been developed considering the stress of compression reinforcement at ultimate state. Based on the numerical analysis results, the proposed predictions for the curvature ductility factor are verified by comparisons with other prediction formulas. The proposed formula offers fairly accurate and consistent predictions for curvature ductility factor of doubly reinforced concrete beam sections.

Loss of strength in asbestos-cement water pipes due to leaching

  • Gil, Lluis;Perez, Marco A.;Bernat, Ernest;Cruz, Juan J.
    • Structural Engineering and Mechanics
    • /
    • 제40권5호
    • /
    • pp.655-663
    • /
    • 2011
  • Asbestos-cement is a material with valuable strength and durability. It was extensively used for water distribution pipes across the world from the 1950s until the early 1980s. The network of pipes in this case study dates from the 1970s, and after more than 30 to 40 years of service, some pipes have been found to break under common service pressure with no apparent reason. A set of mechanical tests was performed including bending, compression, pressure and crushing tests. Microscopy analysis was also used to understand the material behaviour. Tests showed that there was a clear loss of strength in the pipes and that the safety factor was under the established threshold in most of the specimens. Microscopy results showed morphological damage to the pipes. The loss of strength was attributed to a leaching effect. Leaching damages the cement matrix and reduces the frictional interfacial shear stress.

초고강도 콘크리트의 강도발현에 관한 기초적 연구 (Study of strength Development of Ultra High-Strength Concrete)

  • 민홍준;공민호;임남기;이영도;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.75-79
    • /
    • 2006
  • Recently, more highly effective construction materials are needed for the reasonable and economical structure system is required as the construction structures become more multi storied, large-sized and diversified. That is to say, the highly qualified concrete is positively promoted as a part of plan to establish the effective space according to the dead load of structures and diminish of segment profile and to build up the economic structures. However, the high strength concrete has the problems such high brittleness and low ductility. Specially, for the high strength concrete, it has different strength from normal concrete as the internal temperature goes up steadily due to high heat of hydration by the quantities of highly level of cement, so the concrete which is mixed with various miscible materials is used. As the development and study for high strength concrete (more than $100N/mm^2$) is under way actively and the strength of high strength concrete increases, the strength different from the existing high strength concrete of ten than $100N/mm^2$, but the study for this is not adequate and indefinite. In addition, the study and report to apply the strength expression and analysis results of internal structure. Therefore, this study is an experiment about using the miscible materials affects what happens to the longitudinal physical property.

  • PDF

Study of thin film transition liquid crystal display (TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials

  • Wang, Her-Yung;Chen, Jyun-Sheng
    • Computers and Concrete
    • /
    • 제5권5호
    • /
    • pp.491-501
    • /
    • 2008
  • The present study verifies compressive strength, ultrasonic pulse velocity, electrical resistance,permeable ratio, and shrinkage from waste glass controlled low strength materials (WGCLSM) and early-high-strength WGCSLM specimens, by replacing the sand with waste glass percentages of 0%, 10%,20%, and 30%. This study reveals that increasing amounts of waste LCD glass incorporated into concrete increases WGCLSM fluidity and reduces the setting time, resulting in good working properties. By increasing the glass to sand replacement ratio, the compressive strength decreases to achieve low-strength effects. Furthermore, the electrical resistance also rises as a result of increasing the glass to sand replacement ratio. Early-high-strength WGCSLM aged 28 days has twice the electrical resistance compared to general WGCSLM. Early-high-strength WGCSLM aged 7 days has a higher ultrasonic pulse velocity similar to WGCSLM aged 28 days. The variation of length with age of different compositions is all within the tolerance range of 0.025%. This study demonstrates that the proper composition ratio of waste LCD glass to sand in early-high-strength WGCSLM can be determined by using different amounts of glass-sand. A mechanism for LCD optical waste glass usage can be established to achieve industrial waste minimization, resource recycling, and economic security.

경화된 콘크리트에 접착된 폴리머 콘크리트의 부착강도 특성 (Bonding Strength of bonded Polymer Concrete on Cured Cement Concrete)

  • 홍승호;권순민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.353-358
    • /
    • 2001
  • The cement concrete pavements are designed twenty years of performance life in Korea. At the present time, some expressways have been elapsed seventy percent of performance life which are detecting local failures. The most repair methods using to repair failures are partial depth repair and full section repair. These methods are most important bonding strength between rapid curing materials and substrate concrete pavements. This study was performed to evaluate bonding strength of the composites section made of rapid curing material and substrate concrete pavements. The pull-out tester was used to test bonding strength for the composites section made of each materials. In the results of the test, the bonding strength values of the epoxy mortar and acrylic mortar are higher than those of the other materials. The performance life of repaired section is affected by various factor. The bonding strength of bonded composites section may be affect the performance life, significantly.

  • PDF

인장/압축 하중 하에서 FEA를 이용한 굴곡진 보강섬유를 가진 두꺼운 복합재료의 강도예측에 관한 연구 (Strength Prediction of Thick Composites with Fiber Waviness under Tensile/Compressive Load Using FEA)

  • 류근수;전흥재
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.129-132
    • /
    • 2001
  • Fiber waviness is one of manufacturing defects encountered frequently in thick composite structures. It affects significantly on the behavior as well as strength of thick composites. The effects of fiber waviness on tensile/compressive nonlinear elastic behavior and strength of thick composite with fiber waviness are studied theoretically and experimentally. FEA(Finite Element Analysis) models are proposed to predict tensile/compressive nonlinear behavior and strength of thick composites. In the FEA models, both material and geometric nonlinearities were incorporated into the model using energy density, iterative mapping and incremental method. Also Tsai-Wu criteria was adopted to predict the strength of thick composites with fiber waviness. Tensile and compressive tests were conducted on the specimens with uniform fiber waviness. It was observed that the degree of fiber waviness in composites significantly affected the nonlinear behavior and strength of the composites

  • PDF

설계기준강도 100MPa급 초고강도 콘크리트의 기초물성에 관한 실험적 연구 (An Experimental Study for Basic Property of Ultra High-strength Concrete in a 100MPa class of Specified Concrete Strength)

  • 공민호;양동일;정상진
    • 한국건축시공학회지
    • /
    • 제6권3호
    • /
    • pp.123-129
    • /
    • 2006
  • In these days, as building structures are getting taller, larger, and more diversified, structural systems with more economy and more efficiency are being required and so are more efficient building materials, this study conducted a basic experiment to conclude an adequate selection of materials and to calculate an optimal mixing proportion of those materials to produce High-strength concrete in a 100MPa of specified concrete strength. And also we conducted an experiment to find out basic properties of this concrete such as slump-flow, strength.