• Title/Summary/Keyword: strength limit

Search Result 1,261, Processing Time 0.031 seconds

A New Concept for Efficient Sensitivity Amplification of a QCM Based Immunosensor for TNF-α by Using Modified Magnetic Particles under Applied Magnetic Field

  • Bahk, Yeon-Kyoung;Kim, Hyung-Hoon;Park, Deog-Su;Chang, Seung-Cheol;Go, Jeung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4215-4220
    • /
    • 2011
  • This study introduces a new concept for a simple, efficient and cheap sensitivity amplification of a Quartz Crystal Microbalance (QCM) based immunosensor system for the detection of tumor necrosis factor-alpha (TNF-${\alpha}$, TNF) by using an in-built magnetic system. The frequency shift due to the applied magnetic field was successfully observed on magnetic particles labeled detection antibodies, anti-human TNF-${\alpha}$, which were bound to the immunologically captured TNF-${\alpha}$ on the gold coated quartz crystals. In the present system, the magnitude of frequency shift depends on both the strength of magnetic field and the amount of target antigen applied. Significant signal amplification was observed when the additional built-in residual stress generated by the modified magnetic particles under the magnetic field applied. Used in conjunction with a sandwich type non-competitive immunoassay format, the lower detection limit was calculated to be 25 $ngmL^{-1}$ and showed good linearity up to TNF-${\alpha}$ concentrations as high as 2.0 ${\mu}gmL^{-1}$. The sensitivity, most importantly, was improved up to 4.3 times compared with the same QCM system which was used only an antigen-antibody binding without additional magnetic amplification.

The Method for 3-D Localization of Implantable Miniaturized Telemetry Module by Analysis of Nonlinear Differential Equations (비선형 연립방정식에 의한 체내 삽입형 초소형 텔레메트리 모듈의 3차원 위치추적 방법)

  • Park, J.C.;Nam, H.W.;Park, H.J.;Song, B.S.;Won, C.H.;Lee, S.H.;Choi, H.C.;Cho, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.249-257
    • /
    • 2003
  • The bio-telemetry technologies, that use the wireless miniaturized telemetry module implanted in the human body and transmits several biomedical signal from inside to outside of the body, have been expected to solve the problem such as the patient's inconvenience and the limit for diagnosis. In the case of transceiver system using the wireless RF transmission method, the method of three-dimensional localization for implantable miniaturized telemetry module is necessary to detect the exact position of disease. A new method for three-dimensional localization using small loop antenna in the implantable miniaturized telemetry module was proposed in this paper. We proposed a method that can accurately determine the position of telemetry module by analyzing the differences in the strength of signal, which is received at each of the small size RF receiver array installed on the body surface.

A Study on the Prediction of Teeth Deformation of the Automobile Transmission Part(Shaft/Gear) in Warm Shrink Fitting Process (온간압입공정에서 자동차 변속기 단품(축/기어) 치형 변화 예측에 관한 연구)

  • Kim, Ho-Yoon;Choi, Chang-Jin;Bae, Won-Byong;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.54-60
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes of gear profile in both radial and circumferential directions. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the gear profile in both radial and circumferential directions are within the limit tolerances used in the field.

An Examination of the Maximum Steel Ratio for Reinforced Concrete Flexural Members: Focused on Singly Reinforced Beam with Rectangular Cross-section (철근콘크리트 휨부재의 최대철근비에 대한 고찰: 단철근 직사각형보를 중심으로)

  • Lee, Jun-Seok;Kim, Woo;Choi, Seung-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.179-187
    • /
    • 2017
  • The design provisions for the maximum steel ratio in reinforced concrete flexural members is normally provided to ensure sufficient ductility and economy by steel yielding at member failure. In the Concrete Structural Design Code (2012), the maximum steel ratio is expressed in terms of a net strain in tensile steel, and leading to very high steel ratio in the case of using high strength materials. Thereby, this may result in difficulty to satisfy a required workability at concrete placing. On the contrary, in the Korean Highway Bridge Design Code (Limit State Design) the maximum steel ratio is given in terms of the maximum neutral axis depth ratio that is 0.4. From these results, a rational model for the maximum steel ratio is suggested so as to satisfy a ductility as well as a workability.

Development of Ceramic Body using Waste Celadon (청자 파도자기를 활용한 도자기 소지 개발)

  • Lee, Jea-Il;Park, Joo-Seok;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.602-608
    • /
    • 2009
  • The yield is increasing as the manufacturing technology of ceramics progresses, however, there are many ceramics of poor quality due to variables upon producing ceramics. Some of those waste ceramics are recycled by sanitary ware or tile manufacturers, but most of them are filled in making environmental problem. Therefore, a research begins to recycle waste ceramic ware as alternative to some imported ceramic ware materials and to reduce environmental pollution. This study, succeeding last study which applied waste white ware as ceramic body material, aimed to solve problems of environment and materials by recycling waste ceradon generated in specially formed areas for ceramic in Gyeonggi-do such as Icheon, Yeoju and Gwangju as the ceramic body material. Consequently, the addition of waste ceramic ware into the ceramic body was judged to have limit up to 30% according to plasticity measurement. As we added shredded waste ceramic ware as much as 30% into basic ceramic body and checked its features, the pore rate and absorption rate were good to be average 4% and 3% respectively. In addition, it showed strength more than 720 kgf/$cm^2$ which is higher than existing ceradon body on the market with good sinter state; so it is judged to be available or developed as new ceramic body.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

Modelling of aluminium foam sandwich panels

  • D'Alessandro, Vincenzo;Petrone, Giuseppe;De Rosa, Sergio;Franco, Francesco
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.615-636
    • /
    • 2014
  • Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.

Analysis of Filling and Stresses in the Hot Forging Process Depending on Flange Die Shapes (열간단조 플랜지 금형의 형상에 따른 충전 및 응력해석)

  • Kim, Jun-Hyoung;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.423-430
    • /
    • 2010
  • Hot closed-forging process and the die used for forming an automotive flange were analyzed from the viewpoints of heat transfer, grain-flow lines, and stresses to obtain a forged product without defects such as surface cracks, laps, cold shots, and partial filling. The forging process including up-set, pre-forging, final forging and pressing forces was investigated using finite element analysis. The influence of the preform die and the ratio of the heights of the upper die to lower die on the forging process and die were investigated and a die shape ($10^{\circ}$ for the preform die, and 1.5:1 ratio for the final die) suitable to achieve successful forging was determined on the basis of a parametric study. All parametric design requirements such as strength, full filling, and a load limit of 13,000 KN were satisfied for this newly developed flange die. New dies and flanges were fabricated and investigated. Defects such as partial filling and surface cracks were not observed.

Analysis of demountable steel and composite frames with semi-rigid bolted joints

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.363-380
    • /
    • 2018
  • This paper presented an integral design procedure for demountable bolted composite frames with semi-rigid joints. Moment-rotation relationships of beam-to-column joints were predicted with analytical models aiming to provide accurate and reliable analytical solutions. Among this, initial stiffness of beam-to-column joints was derived on the basis of Timoshenko's plate theory, and moment capacity was derived in accordance with Eurocodes. The predictions were validated with relevant test results prior to further applications. Frame analysis was conducted by using Abaqus software with material and geometrical nonlinearity considered. Variable lateral loads incorporating wind actions and earthquake actions in accordance with Australian Standards were adopted to evaluate the flexural behaviour of the composite frames. Strength and serviceability limit state criteria were utilized to verify configurations of designed models. A wide range of frames with the varied number of storeys and bays were thereafter programmed to ascertain bending moment envelopes under various load combinations. The analytical results suggest that the proposed approach is capable of predicting the moment-rotation performance of the semi-rigid joints reasonably well. Outcomes of the frame analysis indicate that the load combination with dead loads and live loads only leads to maximum sagging and hogging moment magnitudes in beams. As for lateral loads, wind actions are more crucial to dominate the design of the demountable composite frames than earthquake actions. No hogging moment reversal is expected in the composite beams given that the frames are designed properly. The proposed analysis procedure is demonstrated to be a simple and efficient method, which can be applied into engineering practice.

Effect of Visual Feedback Training of Core Strength on Coordination, Balance and Walking Ability of Stroke Patients (코어강화를 동반한 시각적 되먹임 훈련이 뇌졸중 환자의 협응력, 균형과 보행능력에 미치는 영향)

  • Yoon, Sam-Won;Son, Ho-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • PURPOSE: This study compares the effects of HUBER rehabilitation and general rehabilitation treatment on the coordination, balance, and walking ability of stroke patients. METHODS: This study enrolled 38 randomized stroke patients, and data was collected for 6 weeks. All participants were randomly assigned to either the experimental group (n = 19) or control group (n = 19). The experimental group were administered Huber rehabilitation and general rehabilitation treatment. The control group was given only general rehabilitation treatment. Both treatments were conducted for 30 minutes during each training session, 3 training sessions per week, for 6 weeks. The coordination, balance, and walking ability were evaluated before and after the intervention, to compare the intergroup and intragroup changes. RESULTS: Change in the right LOS (limit of stability) (p < .001) and forward LOS (p < .02) following intervention were significantly greater in the experimental group than in the control group, but no significant group difference was observed between left LOS (p > .1) and backward LOS (p > .2). Alterations in coordination (p < .02) and TUG (p <. 05) were significantly greater after intervention in the experimental group than in the control group. CONCLUSION: These findings suggest that HUBER rehabilitation is effective in improving the coordination, balance, and walking ability in stroke patients. To strengthen and validate the results of this study, future studies related to HUBER rehabilitation are required.