• Title/Summary/Keyword: strength limit

Search Result 1,267, Processing Time 0.024 seconds

A Study on the Failure Characteristic of Excavation Puddle by LPG Explosion using AUTODYN (LPG 폭발로 인한 건설현장 굴착웅덩이의 구조물 파손 특성에 관한 연구)

  • Kim, Eui Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.58-65
    • /
    • 2022
  • Gas explosion accidents could cause a catastrophe. we need specialized and systematic accident investigation techniques to shed light on the cause and prevent similar accidents. In this study, we had performed LPG explosion simulation using AUTODYN which is the commercial explosion program and predicted the damage characteristics of the structures by LNG explosive power. In the first step, we could get LPG's physical and chemical explosion properties by calculation using TNT equivalency method. And then, by applying TNT equivalency value about the explosion limit concentration of LPG on the 2D-AUTODYN simulation, we could get the explosion pressure wave profiles (explosion pressure, explosion velocity, etc.). In the last step, we performed LPG explosion simulation by applying to the explosion pressure wave profiles as the input data on the 3D-AUTODYN simulation. As a result, we had performed analyzing of the explosion characteristics of LPG in accordance with concentration through the 3D-AUTODYN simulation in terms of the explosion pressure behavior and structure destruction and damage behavior. The analyses showed that the generated stresses of the structures were lower than the compressive strengths in cases 1(two lane) and 2(four lane), while the generated stress in case 3(six lane) was 8.68e3 kPa, which exceeded the compressive strength of 5.89e3 kPa.

Application of Nanoindentation Technique for Characterizing Surface Properties of Carburized Materials (침탄 처리 소재의 표면 분석을 위한 나노압입시험법의 응용)

  • Choi, In-Chul;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.3
    • /
    • pp.139-149
    • /
    • 2022
  • In the automobile and shipbuilding industries, various materials and components require superior surface strength, excellent wear resistance and good resistance to repeated loads. To improve the surface properties of the materials, various surface heat treatment methods are used, which include carburizing, nitriding, and so on. Among them, carburizing treatment is widely used for structural steels containing carbon. The effective carburizing thickness required for materials depends on the service environment and the size of the components. In general, however, there is a limit in evaluation of the surface properties with a standardized mechanical test method because the thickness or cross-sectional area of the carburized layer is limited. In this regard, the nanoindentation technique has lots of advantages, which can measure the mechanical properties of the material surface at the nano and micro scale. It is possible to understand the relationship between the microstructural change in the hardened layer by carburizing treatment and the mechanical properties. To be spread to practical applications at the industrial level, in this paper, the principle of the nanoindentation method is described with a representative application for analyzing the mechanical properties of the carburized material.

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

Assessing interfacial fracture in orthotropic materials: Implementing the RIS concept with considering the T-stress term under mixed-mode I/II

  • Zahra Khaji;Mahdi Fakoor
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.237-247
    • /
    • 2024
  • Research on interfacial crack formation in orthotropic bi-materials has experienced a notable increase in recent years, driven by growing concerns about structural integrity and reliability. The existence of a crack at the interface of bi-materials has a substantial impact on mechanical strength and can ultimately lead to fracture. The primary objective of this article is to introduce a comprehensive analytical model and establish stress relationships for investigating interfacial crack between two non-identical orthotropic materials with desired crack-fiber angles. In this paper, we present the application of the Interfacial Maximum Tangential Stress (IMTS) criterion, in combination with the Reinforcement Isotropic Solid (RIS) model, to investigate the behavior of interfacial cracks in orthotropic bi-materials under mixed-mode I/II loading conditions. We analytically characterize the stress state at the interfacial crack tip using both Stress Intensity Factors (SIFs) and the T-stress term. Orthotropic materials, due to their anisotropic nature, can exhibit complex crack tip stress fields, making it challenging to predict crack initiation behavior. The secondary objective of this study is to employ the IMTS criterion to predict the crack initiation angle and explore the notable impact of the T-stress term on fracture behavior. Furthermore, we validate the effectiveness of our approach in evaluating Fracture Limit Curves (FLCs) for interfacial cracks in orthotropic bi-materials by comparing our FLCs with relevant experimental data from existing literature.

Seismic performance evaluation of an external steel frame retrofit system

  • Michael Adane;Hyungoo Kang;Seungho Chun;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.549-562
    • /
    • 2024
  • In this study a steel moment frame system to be installed on the exterior surface of an existing structure is proposed as a seismic retrofit device. The seismic performance of the retrofit system was investigated by installing it on the exterior of a single story single bay reinforced concrete frame and testing it under cyclic loading. The cyclic loading test results indicated that the steel frame significantly enhanced the strength and ductility of the bare structure. Finite element analysis was carried out to validate the test results, and it was observed that there was good agreement between the two results. An analytical model was developed in order to apply the retrofit system to an example structure subjected to seven mainshock-aftershock sequential earthquake records. It was observed that the model structure was severely damaged due to the mainshock earthquakes, and the seismic response of the model structure increased significantly due to the subsequent aftershock earthquakes. The seismic retrofit of the model structure using the proposed steel frame turned out to be effective in decreasing the seismic response below the given limit state.

THE EFFECT OF CYCLIC LOADING ON THE RETENTIVE STRENGTH OF FULL VENEER CROWNS (반복 하중이 Full veneer crown의 유지력에 미치는 영향에 관한 연구)

  • Kim, Ki-Youn;Lee, Sun-Hyung;Chung, Hun-Young;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • Dislodgement of a crown or extension bridge and the loosening of a retainer of a bridge is a serious clinical problem in fixed restoration. Generally these problems are considered to be associated with deformation of the restoration. During biting, the restoration is subjected to complex forces and deforms considerably within the limit of its elasticity. Deformation of the restoration under the occlusal force induces excessive stress in the cement film, which then leads to the cement fracture. Such a fracture may eventually cause loss of the restoration. Because most of the past retention tests for full veneer crown were done without fatigue loading, they were not exactly simulating intraoral environment. And the purpose of this study was to evaluate the effect of cyclic cantilever loading on the retentive strength of full veneer crowns depending on different type of cements and taper of prepared abutment. Steel dies with $8^{\circ}\;or\;16^{\circ}$ convergence angle were fabricated through milling and crowns with the same method. These dies and crowns were divided into 8 groups. Group 1 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 2 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 3 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 4 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 5 : $16^{\circ}$ taper die, cementation with Panavia 21, without loading Group 6 : $16^{\circ}$ taper die, cementation with Panavia 21, with loading Group 7 : $8^{\circ}$ taper die, cementation with Panavia 21 without loading Group 8 : $8^{\circ}$ taper die, cementation with Panavia 21, with loading After checking the fit of die and crown, the luting surface of dies and inner surface of crowns were air-abraded for 10 seconds. The crowns were cemented to the dies, with cements mixed according to the manufacturer's recommendations. A static load of 5kg was then applied for 10 minutes with static loading device. Twenty-four hours later, group 1, 3, 5, 7 were only thermocycled, group 2, 4, 6, 8 were subjected to cyclic loading after thermocycling. Retentive tests were performed on the Instron machine. From the finding of this study, the following conclusions were obtained 1. Panavia 21 showed significantly higher retentive strength than zinc phosphate cement for all groups (p<0.05). 2. There was a significant difference in the retentive strength between $8^{\circ}\;and\;16^{\circ}$ taper for zinc phosphate cement(p<0.05), but no significant difference for Panavia 21 (p>0.05). 3. Cyclic loading significantly decreased the retentive strength for all groups(p<0.05). 4. For zinc phosphate cement, there was 35% reduction of the retentive strength after loading in the $16^{\circ}$ taper die, 25% in the $8^{\circ}$ taper die, and for Panavia 21, 21% in the $16^{\circ}$ taper die, 18% in the $8^{\circ}$ taper die.

  • PDF

A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip (플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

Confining Effect of Mortar Grouted Splice Sleeve on Reinforcing Bar (모르타르 충전식 철근이음과 구속효과)

  • Ahn, Byung-Ik;Kim, Hyong-Kee;Park, Bok-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.102-109
    • /
    • 2003
  • The grouted splice steeve has been applied widely due to its superior construction efficiency, such as the unnecessity of post concrete and the large allowable limit to the arrangement of reinforcing bars. However, studies on grout-filled splice steeve still have not been sufficiently peformed. The purpose of this study is to investigate the confining effect of mortar grouted splice sleeve on reinforcing bar, known to strengthen the bond capacity between grout mortar and reinforcing bar. To accomplish this objective, totally 6 full-sized specimens were made and tested under monotonic loading. Each specimens were equipped with strain gauges at the 12 location of sleeve and reinforcing bar. The experimental variables adopted in this study are embedment length and size of reinforcing bars. Following conclusions are obtained; 1) Under ultimate strength condition, the confining pressure of grouted splice sleeve calculated from measured tangential and axial strain of the sleeve is over $200{\sim}300kgf/{cm}^2$ at any location of sleeve and improved with reduction in embedment length of reinforcing bar. 2) Untrauer and Henry's equation which describe bond strength of mortar as a function of its compressive strength and confining pressure, predicted the measured bond capacity of this test within the 5% limits.

A Study on the Flexural Minimum Reinforcement for Prevention of Brittle Failure Specified in KCI and EN Codes (유럽과 국내기준에 규정된 취성파괴 방지를 위한 휨 최소철근량 고찰)

  • Park, Sung-Jae;Kang, Tae-Sung;Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.211-218
    • /
    • 2014
  • In the design of reinforced rectangular concrete beam structure, the minimum amount of flexural reinforcement is required to avoid brittle failure. KCI code is based on concept of ultimate strength and usually used as a model code. But bridge design code enacted by Ministry of land, transportation and maritime affairs in 2012 is based on concept of limit state and similar to Euro code EN 1992-2. This means that the minimum reinforcement presented in both design codes has different origination and safety margin. When rectangular concrete beams with minimum reinforcement are designed according to EN and KCI codes, the amount of minimum reinforcement specified in EN code is only 76% of that in KCI code. This makes the design engineers to be confused. In this study, flexural tests were conducted on nine beams with the two different minimum reinforcement specified in KCI and EN design codes. In results, the measured ratios of nominal strength to crack strength from the test were about 25% greater than those evaluated from the equations presented in KCI and EN codes. The EN beams having only 76% of the minimum reinforcement for the KCI beams were fractured by rupture of steel reinforcement but in ductile manner. It is confirmed that the minimum reinforcement concrete beams designed according to both codes have enough safety margin in flexural capacity and moreover in ductility.

Effects of Low-quality Aggregates in the Same Workability Conditions on the Engineering Properties of Concrete (저품질 골재가 동일 작업성 조건에서 콘크리트 공학적 특성에 미치는 영향)

  • Min, Kyeong-Chul;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this research, influence of low quality aggregate on engineering properties of concrete was evaluated experimentally. From the experiment, the fresh properties of slump and air content were controlled with unit water and AE dosage and all mixture were designed to have similar fresh properties of slump and air content with various quality of aggregate. Under this conditions, comparing with the mixture with high quality aggregate, the mixture with low quality aggregate showed the unit water and AE dosage were increased about 18 and 98%, respectively, because of poor grading and quantity of fines. For compressive strength, the low quality aggregate, specifically, exploded debris, clay sand, and sea sand contributed on decreasing compressive strength about 20~35%. Additionally, the concrete mixture including low quality fine and coarse aggregate showed adverse quality in not only compressive strength but also durability of freeze-thawing resistance, drying shrinkage, carbonation, and chloride ingression. Therefore, it is considered that for low quality aggregate, extra treatment processes such as washing or controlling gradation, and regulation to limit the use of low quality aggregate are needed.