DOI QR코드

DOI QR Code

A Study on the Flexural Minimum Reinforcement for Prevention of Brittle Failure Specified in KCI and EN Codes

유럽과 국내기준에 규정된 취성파괴 방지를 위한 휨 최소철근량 고찰

  • Received : 2013.12.09
  • Accepted : 2014.03.28
  • Published : 2014.04.30

Abstract

In the design of reinforced rectangular concrete beam structure, the minimum amount of flexural reinforcement is required to avoid brittle failure. KCI code is based on concept of ultimate strength and usually used as a model code. But bridge design code enacted by Ministry of land, transportation and maritime affairs in 2012 is based on concept of limit state and similar to Euro code EN 1992-2. This means that the minimum reinforcement presented in both design codes has different origination and safety margin. When rectangular concrete beams with minimum reinforcement are designed according to EN and KCI codes, the amount of minimum reinforcement specified in EN code is only 76% of that in KCI code. This makes the design engineers to be confused. In this study, flexural tests were conducted on nine beams with the two different minimum reinforcement specified in KCI and EN design codes. In results, the measured ratios of nominal strength to crack strength from the test were about 25% greater than those evaluated from the equations presented in KCI and EN codes. The EN beams having only 76% of the minimum reinforcement for the KCI beams were fractured by rupture of steel reinforcement but in ductile manner. It is confirmed that the minimum reinforcement concrete beams designed according to both codes have enough safety margin in flexural capacity and moreover in ductility.

철근콘크리트 직사각형 휨 부재의 설계에서, 최소철근량은 취성파괴를 방지하기 위하여 필요하다. 콘크리트구조기준은 극한강도 설계개념을 기반으로 국내에서 일반적으로 사용되는 모델코드이다. 그러나 국토해양부에서 2012년 제정한 도로교설계기준은 한계상태설계법을 기반으로 하고 있으며, 유럽의 EN 코드와 유사하다. 따라서, 두 설계기준에서 제시된 최소철근량은 서로 다른 기원과 안전율에 근거한다. 이 연구에서 단철근 직사각형 단면의 실험체에 상기 두 기준을 적용하여 분석한 결과, EN 코드에서 제시된 최소철근량은 KCI 코드에서 제시된 최소철근량의 76%에 불과하며, 이러한 점에서 구조 설계자의 혼란을 야기한다. 이 연구에서는, KCI와 EN 코드에서 제시한 각각의 최소철근량을 보강한 9개의 직사각형 단면의 휨 실험체를 제작하고, 휨 실험을 수행하였다. 결과에서, 모든 실험체에 대하여 실험에서 측정된 공칭강도와 균열강도의 비는 각 설계식으로부터 평가된 공칭강도와 균열강도의 비에 비하여 25% 이상 큰 것으로 나타났다. 국내기준에서 규정하고 있는 최소철근비의 76%가 보강된 EN 보는 보강철근의 파단으로 파괴되었지만 연성적인 파괴거동을 나타내었다. 따라서, 유럽과 국내기준에 의하여 설계된 최소철근비로 보강된 보는 충분한 구조적 안전성과 연성을 보유하고 있는 것으로 확인되었다.

Keywords

References

  1. Stephen J, S., Richard, B., and Bijan, K. "Making Sense of Minimum Flexural Reinforcement Requirements for Reinforced Concrete Members," PCI Journal, Vol. 55, Issue 3, 2010, pp. 64-85. https://doi.org/10.15554/pcij.06012010.64.85
  2. Yoo, S. W. and Her, Y., "A Proposal of Minimum Steel Ratio Considering Size Effect for Flexural Reinforced Concrete Member," Journal of the Korean Society of Safety, Vol. 25, No. 6, 2010, pp. 128-136.
  3. Bruckner, M. and Eligenhausen, R., "Minimum Reinforcement in RC Beams," 2nd International PhD Symposium in Civil Engineering, Budapest, 1998, pp. 1-7.
  4. Subramanian, N., "Limiting Reinforcement Ratios for RC Flexural Members," The Indian Concrete Journal, Vol. 84, No. 9, 2010, pp. 71-80.
  5. Ahn, Y. S., "An Experimental Study of Flexure of Reinforced Concrete for Minimum Steel Ratio Considering Size Effect," Doctoral Thesis, Woosuk University, 2010, 47 pp.
  6. Bosco, C., Carpinteri, A., and Debernardi, P. G., "Minimum Reinforcement in High-Strength Concrete," Journal of Structural Engineering, Vol. 116, No. 2, 1990, pp. 427-437. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(427)
  7. Korea Concrete Institute, Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, Korea, 2012, pp. 116-119.
  8. Hendy, C. R. and Smith, D. A., Designer's Guide to EN 1992-2 Eurocode 2: Design of Concrete Structures, Part 2: Concrete Bridges, Thomas Telford, Eurocodes Expert, 2007, pp. 276-277.
  9. Kwon, S. B. and Yoon, Y. S., "Flexural Behavior of RC Beams Using High-Strength Reinforcement for Ductility Assessment," Journal of KOSHAM, Vol. 2, No. 1, 2002, pp. 119-126.
  10. Shin, S. W., Kang, H., Ahn, J, M., and Kim, D. W., "Flexural Capacity of Singly Reinforced Beam with 150 MPa Ultra High-Strength Concrete," Indian Journal of Engineering & Materials Sciences, Vol. 17, No. 6, 2010, pp. 414-426.
  11. Rachid, M. A. and Mansur, M. A., "Reinforced Hing-Strength Concrete Beams in Flexure," ACI Structural Journal, Vol. 102, No. 3, 2005, pp. 462-471.
  12. Shin, S. W., Yoo, S. H., An, J. M., and Lee, K. S., "Flexural Design and Ductile Capacity of Reinforced High Strength Concrete Beams," Journal of Korea Concrete Institute, Vol. 8, No. 6, 1996, pp. 141-149.
  13. Hong, G. H., "Flexural Performance Evaluation of Reinforced Concrete Beams with High-Strength Concrete and Reinforcing Bars," Journal of Architectural Institute of Korea, Vol. 27, No. 6, 2011, pp. 49-56.