• Title/Summary/Keyword: strength design method

Search Result 2,593, Processing Time 0.035 seconds

Study(III) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - The Proper Use of Long-term Allowable Compressive Load of PHC Piles by Analyzing Quality Test and Product Specifications Data - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(III) - 품질 성능 검사 자료 및 성능 제원 표 분석을 통한 PHC말뚝의 장기허용압축하중 성능의 올바른 활용 -)

  • Kim, Chae Min;Yun, Dae Hee;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.15-28
    • /
    • 2019
  • Long-term allowable compressive Loads of PHC piles were analyzed based on qualification tests results by 17 small and medium PHC pile producing companies and product specifications by 6 major and 17 small and medium PHC pile producing companies. At the present stage, an average long-term allowable compressive load of PHC pile was designed at 70% level from current design data, and safety factor of 4.0 was applied to long-term allowable compressive loads of PHC pile despite of its excellent quality. Most quality standards of PHC pile are specified at KS F 4306. But compressive strength test method of spun concrete is specified at KS F 2454. As a result of analyzing quality test data supplied by each manufacturer, all quality test results showed higher performances than standard values. Therefore, it was considered that the capacity of PHC pile can be used up to the maximum allowable compressive load of PHC pile when PHC pile is designed.

An Experimental Study on Reinforcement Method for Reuse of Onshore Wind Turbine Spread Footing Foundations (육상풍력터빈 확대기초의 재사용을 위한 보강방법에 관한 실험적 연구)

  • Song, Sung Hoon;Jeong, Youn Ju;Park, Min Su;Kim, Jeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In order to reuse existing onshore turbine foundations, it is important to redesign and reinforce the existing foundations according to the upgraded tower diameter and turbine load. In the present study, a slab extension reinforcement method and structure details of an anchorage part were examined in consideration of the reuse of spread footings, which are the most widely used foundation type in onshore wind turbine foundations. Experiments were conducted to evaluate the load resistance performance of a reinforced spread footing according to structure details of an anchorage part. The results showed that (1) the strength of an anchorage part could be increased by more than 30 % by adding reinforcement bars in the anchorage part, (2) pile-sleeves attached to an anchor ring contributed to an increase in rotational stiffness by preventing shear slip behavior between the anchor ring and the concrete, and (3) slab connectors contributed to an increase in the strength and deformation capacity by preventing the separation of new and old concrete slabs.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Study on Fatigue Behavior and Rehabilitation of Stringer with Coped Section(I) -Experimental Study on Static and Fatigue Behavior- (절취부를 갖는 세로보의 피로거동과 보수·보강에 관한 연구(I) -정적거동 및 피로거동의 실험적 고찰-)

  • Hwang, Yoon Koog;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.363-375
    • /
    • 1997
  • This study encompasses the performance of static and fatigue test for the 8 large scale test specimens to clarify the fatigue behavior of coped stringer and the effect of the repair and strengthening on the damaged stringer of the floor system in steel railway bridges. For the purpose of the research, the actual stress wave for the existing bridge was measured, the basic stress range frequency histogram was made and the equivalent stress range was calculated. Using the result from the equivalent stress range made by adjusting the stress range, the static and fatigue test was carried out by identifying the previous rehabilitation and after. As the result of the static tests, it was revealed that the level of local stress under the S1 specimen test of the real equivalent stress range was similar to tensile strength of the test material, and it was consistent with the requirement of the initiation condition of the fatigue crack. Through the various rehabilitation methods to the damaged specimens, the effects of the repair and reinforcement were analyzed. According to the results of the repair of effect, bolting the high tension bolt over the stop hole was confirmed to be more adequate method than drilling only stop hole to delay the fatigue crack growth. Futhermore, in case of the stringer subjected by bending moment, the reinforcement over the upper flange side was determined to be a useful strengthening method, and the reinforcement to the web of the stringer was not appropriate to accomodate as a adequate strengthening method. Also it was confirmed that the category of the fatigue design for the coped stringer met with the category E specified on the fatigue design criteria of the Highway Standard Specification in Korea.

  • PDF

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

Effects of the Self-help Tai Chi Program for Arthritis with Supportive Follow up Phone-Calls (지지 전화를 이용한 자조타이치 프로그램 적용 효과)

  • Choi, Jung-Sook;Lee, Eun-Hee;So, Ae-Young;Lee, Kyung-Sook
    • Journal of muscle and joint health
    • /
    • v.16 no.2
    • /
    • pp.174-183
    • /
    • 2009
  • Purpose: The purposes of this study were to develop and examine the self-help and Tai Chi program for arthritis, and to identify the effect when combined with a supportive follow up phone-calls. Method: The design for this study was a 3*2 quasi-experimental design. Sixty-six participants were recruited in W-city, and assigned to Exp 1 group (n=21) or Exp 2 group (n=24) according to supportive follow-up phone call method, or to the control group (n=21). Fifty-two subjects (17 and 20 in Exp 1 and 2, and 15 in the control group) completed pretest and posttest. Both experimental groups participated in the self-help and Tai Chi program for arthritis once a week for 8 weeks. Exp 1 received automated follow up phone-calls made up in KT-SHUT program, and Exp 2 received follow up phone-calls made up by researchers. The control group received no education and no phone call. Measures used to examine the effect self-help and Tai Chi program for arthritis were joint flexibility, hand muscle strength, balance with closed eyes and self-efficacy. The final analysis of the post-test measures was conducted by ANCOVA with age and self efficacy as covariates. Results: Both experimental group had significantly increased right shoulder flexibility (p=.002), left shoulder flexibility (p=.000), right hand grip (p=.024), and self efficacy (p=.008) compared with the control group. But there were no significant differences between two experimental groups in any physical indicators and self efficacy. Conclusion: Automated follow up phone-call would be helpful in managing the self-help and Tai Chi program for arthritis as well as researcher's phone call. The automated follow up phone-call program which was a new method could be recommended for use to encourage home exercise practice and the program participation.

Experimental Verification of Characteristics of Magnetic Abrasive Polishing Combined with Ultrasonic Vibration (실험계획법에 의한 초음파가 부가된 자기연마가공의 특성평가)

  • Jin, Dong-Hyun;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.923-928
    • /
    • 2015
  • In this paper, we propose an ultrasonic magnetic abrasive polishing (US-MAP) technique to effectively machine a high-strength material, and we prove the efficiency of hybrid finishing. We use Taguchi's experimental method to determine the influence of each parameter. Based on the results, US-MAP exhibited a higher polishing efficiency than traditional MAP, and a suitable frequency for hybrid finishing was 28 kHz. When investigating the effect of the parameters on the surface roughness, the ultrasonic amplitude had the greatest effect. However, when machining with $55-{\mu}m$ amplitude, the machining efficiency decreased as the magnetic flux density varied.

Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

  • Shao, Y.B.;Wang, Y.M.;Yang, D.P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1017-1029
    • /
    • 2016
  • When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

A Study on the Evaluation of Thermal Stress of Massive Concrete Structure (매스콘크리트구조물의 온도응력평가에 관한 연구)

  • 강석화;정철헌;정한중;이용호;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.126-135
    • /
    • 1995
  • Thermal cracks are occured when thermal stress due to the hydration of cement exceeds the tens~le strength of concrete. Since crackmg causes poor durability of concrete, the effect of ther ma1 cracking should be includod for the design and construction of massive concrete structures. In this study, an experiment is performed for the investigation of time dependent thermal stress history. In order to evaluate thermal stress. two methods are employed. One 1s the evaluation method of thermal stress based on the measurement from embedment stram gauge with non-stress strain gauge and the other 1s based on the measurement from concrete stress gauge. As a result of this study, the value corrected by the former shows good agreement with the latter. The validity of the proposed method for the evaluation of thermal stress 1s explored.

Crack Control in Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 균열 제어에 관한 연구)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • For a practical simplicity in designing of reinforced concrete structures, the indirect crack controlling method of limiting bar spacing is adopted in KCI structural design provisions. In addition, a direct method for evaluating crack width is also provided in the appendix of the code. But there may be some mismatched results between these two crack controlling methods. In this study, limit values of maximum bar spacing calculated from KCI provisions, KCI appendix, and Frosch's equation are examined as concrete strength, cross-section height, and concrete cover are varied, and the differences are analyzed. From the results, it becomes clear that the differences between maximum bar spacing calculated from KCI code text provisions and those from KCI code appendix provisions are too significant to be neglected. Therefore, rational crack models are suggested in order to get rid of the discrepancy between the direct and indirect control methods.