• Title/Summary/Keyword: strength design method

Search Result 2,593, Processing Time 0.029 seconds

Numerical Simulation of Welding Residual Stress Distribution on T-joint Fillet Structure

  • Hwang, Se-Yun;Lee, Jang-Hyun;Kim, Sung-Chan;Viswanathan, Kodakkal Kannan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.82-91
    • /
    • 2012
  • Fillet welding is widely used in the assembly of ships and offshore structures. The T-joint configuration is frequently reported to experience fatigue damage when a marine structure meets extreme loads such as storm loads. Fatigue damage is affected by the magnitude of residual stresses on the weld. Recently, many shipping registers and design guides have required that the fatigue strength assessment procedure of seagoing structures under wave-induced random loading and storm loading be compensated based on the effect of residual stresses. We propose a computational procedure to analyze the residual stresses in a T-joint. Residual stresses are measured by the X-ray diffraction (XRD) method, and a 3-D finite element analysis (FEA) is performed to obtain the residual stress profile in the T-joint. The proposed finite element model is validated by comparing experiments with computational results, and the characteristics of the residual stresses in the T-joint are discussed.

Stability analysis on the concrete slab of the highest concrete-faced rock-fill dam in South Korea

  • Baak, Seung-Hyung;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.881-892
    • /
    • 2017
  • Design and management of concrete slabs in concrete-faced rock-fill dams are crucial issues for stability and overall dam safety since cracks in the concrete face induced by stress, shrinkage, and deterioration can cause severe leakage from the reservoir into the dam. Especially, the increase of dam height to a certain level to enhance the storage capacity and to improve hydraulic stability can lead to undesirable deformation behavior and stress distribution in the existing dam body and in the concrete slabs. In such conditions, simulation of a concrete slab with a numerical method should involve the use of an interface element because the behavior of the concrete slab does not follow the behavior of the dam body when the dam body settles due to the increase of dam height. However, the interfacial properties between the dam body and the concrete slab have yet to be clearly defined. In this study, construction sequence of a 125 m high CFRD in South Korea is simulated with commercial FDM software. The proper interfacial properties of the concrete slab are estimated based on a comparison to monitored vertical displacement history obtained from the concrete slab. Possibility of shear strength failure under the critical condition is investigated based on the simplified model. Results present the significance of the interfacial properties of the concrete slab.

Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan

  • Aziz, Mubashir;Khan, Tanveer A.;Ahmed, Tauqir
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.475-488
    • /
    • 2017
  • Geotechnical data contributes substantially to the cost of engineering projects due to increasing cost of site investigations. Existing information in the form of soil maps can save considerable time and expenses while deciding the scope and extent of site exploration for a proposed project site. This paper presents spatial interpolation of data obtained from soil investigation reports of different construction sites and development of soil maps for geotechnical characterization of Multan area using ArcGIS. The subsurface conditions of the study area have been examined in terms of soil type and standard penetration resistance. The Inverse Distance Weighting method in the Spatial Analyst extension of ArcMap10 has been employed to develop zonation maps at different depths of the study area. Each depth level has been interpolated as a surface to create zonation maps for soil type and standard penetration resistance. Correlations have been presented based on linear regression of standard penetration resistance values with depth for quick estimation of strength and stiffness of soil during preliminary planning and design stage of a proposed project in the study area. Such information helps engineers to use data derived from nearby sites or sites of similar subsoils subjected to similar geological process to build a preliminary ground model for a new site. Moreover, reliable information on geometry and engineering properties of underground layers would make projects safer and economical.

Effect of Neuromuscular Stabilization Exercise Program Using Whole Body Vibration on Patients with Low Back Pain

  • Park, Sam-Ho;Seo, Jin-Hyuk;Lee, Myung-Mo
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.278-288
    • /
    • 2021
  • Objective: The purpose of this study is to investigate the effect of stabilization exercise on whole-body vibration on pain, dysfunction, psychosocial factors, balance ability, and abdominal contraction with patients with low back pain. Design: A randomized controlled trial Methods: A total of 34 patients with low back pain were assigned randomly to experimental group (n=17) and control group (n=17). Both groups underwent a neuromuscular stabilization exercise program. In addition, the experimental group implemented the neuromuscular stabilization exercise program using whole-body vibration. All interventions were applied 60 min per session, 3 times per week for total 4 weeks. Numeric Rating Scale (NRS), Korean version of Oswestry Disability Index (K-ODI), Fear-Avoidance Beliefs Questionnaire (FABQ), balance ability, muscle thickness and contraction ratio were compared to evaluate the effect on intervention. Results: Both groups showed significant differences in NRS, balance ability, and muscle thickness in contraction, contraction ratio before and after intervention (p<0.05). In addition, the experimental group showed significant difference in the amount of change in NRS, balance ability and muscle thickness in contraction, contraction ratio values than the control group (p<0.05). Conclusions: Neuromuscular stabilization exercise program combined with whole-body vibration stimulation has been proven to be an effective and clinically useful method to decrease pain, dysfunction, increase balance ablilty, and transverse abdominis muscle thickness in contraction and contraction ratio for patients with low back pain.

A Study on the Shape Selection of Mechanical Fastening for the Repair of Fighter Wing (전투기 날개 수리를 위한 기계적 체결의 형상 선정에 관한 연구)

  • Choi, Dongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.467-474
    • /
    • 2021
  • A study on optimal shape selection of a mechanical fastening for the repair of crack defect of ROK Air Force F-5 fighter wing was conducted. The crack defect occurred in the spar of the wing, and the technical manual does not specify the repair method. However, ROK Air Force decided to develop a repair technology for this defect in consideration of various logistic conditions. Three repair shapes for the proper repair were devised and the finite element analysis was performed to examine the structural safety of these three connection members. As a result of the structural safety review, two connection members except one were structurally safe with safety margins over zero because the calculated stress values were at or below the yield strength level. Therefore, two connection members were determined to be able to use for repair under the condition that the aircraft operated within the design limit load. The results of this study would be very useful if the same defect occurs in long-term aircraft operated by the ROK Air Force.

Design and Preparation of Magnetic CTAB/Montmorillonite Nanocomposite for Phenols Removal

  • Shen, Rong;Yu, Yichang;Wang, Yue;Xia, Zhining
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850123.1-1850123.9
    • /
    • 2018
  • The cetyltrimethyl ammonium bromide (CTAB)-modified montmorillonite (MMT) was synthesized via a novel "dissolution and reassembly" method. To determine the optimal formula, the adsorption of C.I. Reactive Red 2 (X3B) with CTAB/MMT was investigated. The optimal CTAB/MMT nanocomposite was used to remove 2,6-dichlorophenol and p-nitrophenol from aqueous solutions. The adsorption results can be described by Langmuir isotherm, and the adsorption capacities were 200 mg/g and 125 mg/g for 2,6-dichlorophenol and p-nitrophenol, respectively. To realize the quick separation and recycle, the magnetic CTAB/MMT was further strategized and synthesized. The adsorption equilibrium time was 15 min for both contaminants; the ions' strength showed a little bit of influence on the adsorption performance. In addition, compared with acidic condition, neutral condition was more beneficial to the adsorption reaction. Due to the addition of $Fe_3O_4$, the adsorption capacities of this magnetic nanocomposite for 2,6-dichlorophenol and p-nitrophenol were a little bit decreased, which were 170 mg/g and 91 mg/g, respectively. However, the magnetic nanocomposite can be separated within 30 s under an external magnetic field, which would be useful in the practical application.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam (U-플랜지 트러스 복합보의 휨 내력에 대한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

Study on Heterojunction Injection Pulley Fabrication for Development of a High-Strength and Light-Weight Industrial Pulley (고강도 경량화 산업용 풀리 개발을 위한 이종접합 사출풀리 제작에 관한 연구)

  • You, Kwan-jong;Bae, Sung-ryong;Kim, Jae-yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-81
    • /
    • 2019
  • In the mold-manufacturing field, various methods of advanced production technology are being used in the production of industrial-grade gear pulleys. Among the current methods are injection molding, hoop molding, insight molding, two-material molding, compound-mold molding, as well as engineering plastic mold. Currently, casting pulleys are inexpensive because they are produced in small quantities. However, they produce complications during the manufacturing process, are very unreasonable for mass production, and are disadvantageous in cost competitiveness. Pulleys are divided into hundreds of kinds and thousands of kinds, so the production methods vary. As these pulleys are made of a single material by a casting and welding method, they are not manufactured using injection molds consisting of different materials. In this research, pulleys, shafts, and reinforced plastic materials were incorporated using ANSYS software, and a low-cost, lightweight technology was applied for trial production with optimum design and extrusion technology.