• 제목/요약/키워드: strength design method

검색결과 2,594건 처리시간 0.029초

실하중 이력에 의한 조인트의 동적강도해석 (Dynamic Stress Analysis of joint by Practical Dynamic Load History)

  • 송준혁;강희용;양성모
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.118-123
    • /
    • 2001
  • Most structures of automobile are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic farces for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic load determination is developed by the combination of the principal stresses of F.E. analysis and experiment. Inverse problem and least square pseudo inverse matrix are adopted to obtain an inverse matrix of analyzed stresses matrix. Pseudo-Practical dynamic load was calculated for Lab. Test of sub-structure. GUI program(PLODAS) was developed for whole of above procedure. This proposed method could be extended to any geometric shape of structure.

  • PDF

원자력발전소 위험도 평가를 위한 인간신뢰도분석 (Human Reliability Analysis for Risk Assessment of Nuclear Power Plants)

  • 정원대;김재환
    • 대한인간공학회지
    • /
    • 제30권1호
    • /
    • pp.55-64
    • /
    • 2011
  • Objective: The aim of this paper is to introduce the activities and research trends of human reliability analysis including brief summary about contents and methods of the analysis. Background: Various approaches and methods have been suggested and used to assess human reliability in field of risk assessment of nuclear power plants. However, it has noticed that there is high uncertainty in human reliability analysis which results in a major bottleneck for risk-informed activities of nuclear power plants. Method: First and second generation methods of human reliability analysis are reviewed and a few representative methods are discussed from the risk assessment perspective. The strength and weakness of each method is also examined from the viewpoint of reliability analyst as a user. In addition, new research trends in this field are briefly summarized. Results: Human reliability analysis has become an important tool to support not only risk assessment but also system design of a centralized complex system. Conclusion: Human reliability analysis should be improved by active cooperation with researchers in field of human factors. Application: The trends of human reliability analysis explained in this paper will help researchers to find interest topics to which they could contribute.

A new base plate system using deformed reinforcing bars for concrete filled tubular column

  • Park, Yong-Myung;Hwang, Won-Sup;Yoon, Tae-Yang;Hwang, Min-Oh
    • Steel and Composite Structures
    • /
    • 제5권5호
    • /
    • pp.375-394
    • /
    • 2005
  • An experimental study was conducted to develop a new base plate anchorage system for concrete filled tubular column under an axial load and a moment. The column was connected to a concrete foundation using ordinary deformed reinforcing bars that are installed at the inside and outside of the column. In order to investigate the moment resisting capacity of the system, horizontal cyclic loads are applied until the ultimate condition is reached with the axial load held constant. To derive a design method for moment resisting capacity, the reinforced concrete section approach was investigated with the assumption of strain compatibility. The results by this approach agreeded well with those of experiments when the bearing pressure of confined concrete and tangent modulus of steel bars are assumed appropriately. Also, it was found that the column interaction curve can be used to predict the yield strength of the base plate system.

Comparative Analysis of Dynamic Moisture Movement Testers

  • Lee, Duck-Weon;Shim, Woo-Sub;Lim, Ho-Sun
    • 패션비즈니스
    • /
    • 제15권6호
    • /
    • pp.40-55
    • /
    • 2011
  • The purpose of this research is to review testing principle, testing design and experimental results of the four dynamic moisture movement testers. The research analyzes Moisture Manager Tester (MMT), Alambeta Instrument, Dynamic Surface Moisture Movement Tester, and Gravimetric Absorbent Testing Method based on American Society for Testing and Material (ASTM) E 96 which is an international standard testing method. Although many of researches use ASTM E 96 to measure moisture movement on a fabric, it has several weaknesses, such as long experimental time and a physical change of sample by a holder of the frame. Hence, lots of researchers have studied and developed the new measurement systems measuring moisture management on a fabric or garment and ultimately mimic heat energy and perspiration created by the human body. These moisture management systems use a variety of parameters, such as electricity, color, and sensor to measure their movement in the fabric. Through comparison with the existing tester (ASTM E 96), the research recognizes the strength and weakness in the dynamic moisture movement testers.

웨브 변단면보의 탄성좌굴에 대한 AISC 기준의 수정계수(B)에 관한 연구 (A Study of the Modification Factor(B) in the AISC Specification for Elastic Buckling of Web-Tapered Beams)

  • 류효진;임남형
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.45-49
    • /
    • 2008
  • 본 논문에서는 미국 AISC-LRFD기준에서 제시하고 있는 웨브 변단면 I형 보의 탄성 좌굴강도 산정식을 고찰하였다. 미국 AISC-LRFD 기준의 기본 개념은 웨브 변단면 보를 가장 작은 단면과 동일한 크기를 가지면서 길이가 다른 등가 일정단면보로 대치하는 것이다. 또한 비지지 구간에 작용하는 응력 구배와 이웃한 보의 횡방향 구속효과를 고려하기 위하여 수정계수(B)를 적용하고 있다. AISC-LRFD 기준에 제시된 수정계수(B)와 유한요소해석결과와의 비교를 통해 본 논문에서는 수정계수(B)를 산정하기 위한 재 정의된 방법을 제안하였다.

유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석 (Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach)

  • 윤영묵;김승억;오진우;박정웅
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

Fast fabrication of amphibious bus with low rollover risk: Toward well-structured bus-boat using truck chassis

  • Mehrmashhadi, Javad;Mallet, Philippe;Michel, Paul;Yousefi, Amin Termeh
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.427-434
    • /
    • 2019
  • This study investigates the structural integrity of the amphibious tour bus under the rollover condition. The multi-purpose bus called Dual Mode Tour Bus (DMTB) which explores on land and water has been designed on top of a truck platform. Prior to the fabrication of new upper body and sailing equipment of DMTB, computational analysis investigates the rollover protection of the proposed structure including superstructure, wheels, and axles. The Computer-Aided Design (CAD) of the whole vehicle model is meshed and preprocessed under high performance using the Altair HyperMesh to attain the best mesh model suited for finite element analysis (FEA) on the proposed system. Meanwhile, the numerical model is analyzed by employing LS-DYNA to evaluate the superstructure strength. The numerical model includes detail information about the microstructure and considers wheels and axles as rigid bodies but excludes window glasses, seats, and interior parts. Based on the simulation analysis and proper modifications especially on the rear portion of the bus, the local stiffness significantly increased. The vehicle is rotated to the contact point on the ground based on the mathematical method presented in this study to save computational cost. The results show that the proposed method of rollover analysis is highly significant not only in bus rollover tests but in crashworthiness studies for other application. The critical impartments in our suggested dual-purpose bus accepted and passed "Economic Commission for Europe (ECE) R66".

Ti-6Al-4V 합금의 가공에서 공구 수명 향상을 위한 엔드밀 형상의 선정에 관한 연구 (Study on the Selection of End Mill Shape to Improve Tool Life in End Mill Process of Ti-6Al-4V Alloy)

  • 김도혁;정윤교;조영태
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.76-82
    • /
    • 2019
  • This study aims to find the shapes of an end-mill with low cutting temperature during the end-mill process of Ti-6Al-4V alloy. Such ${\alpha}-{\beta}$ titanium alloys are increasingly more used for their high tensile strength and high corrosion resistance. The cutting characteristics of Ti-6Al-4V alloy were studied using an analytical method validated by comparing the estimated cutting resistance with that from experiments. The end-mill shape was analyzed using an experimental method. The end-mill shape with low cutting resistance and low cutting temperature was confirmed by analyzing the signal-to-noise ratios for various conditions. Then, the factors with significance factor of 95% or more were determined in the variance analysis. Finally, an end-mill shape that can ensure a low cutting temperature was proposed.

마그네슘합금 판재 정밀성형을 위한 판단조 공정 연구 (Plate Forging Process for Near-net Shaping of Mg-alloy Sheet)

  • 송용현;김세종;이영선;윤은유
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.35-42
    • /
    • 2021
  • Magnesium alloys are used in electronic devices such as laptops due to their lightweight features as well as vibration absorption and electromagnetic shielding properties. However, the precision of electronics is limited by the large number of small and precise ribs, the cost-effective manufacture of which requires appropriate technology. Plate forging is an efficient manufacturing process that can address these challenges. In this study, plate forging of magnesium alloys was investigated specifically for the fabrication of laptop cover. The plate forging process with back-pressure was used for near-net shape formation. Finite element analysis was used to select appropriate variables for back-pressure formation to generate ribs of various sizes and shapes without defects. The reliability of the analysis was verified to manufacture the prototype. The effect of back-pressure can be verified via fabrication of prototypes as well as structure and forming analysis based on finite element method. The process design factor of back-pressure increases formability without defects of under-filling and flow-through. Moreover, the tensile strength was maintained even after high temperature plate forging at 370 ℃, and the elongation was improved.

고감쇠 고무와 강재를 사용한 이중감쇠 제진시스템의 내진성능 (Seismic Performance of Dual Damper System Using High Damping Rubber and Steel)

  • 김정욱;김동건
    • 대한건축학회연합논문집
    • /
    • 제21권1호
    • /
    • pp.185-192
    • /
    • 2019
  • Recently, the frequency and magnitude of earthquakes are increasing worldwide. In Korea, the Gyeongju earthquake (2016) and the Pohang earthquake (2017) caused structural damage to many buildings. Since Korea's seismic design standards were revised to three or more stories in 2005, five-story buildings built before the revision are not designed to be earthquake-resistant. In this situation, if strong earthquake occurs in Korea, there will be great damage. To prevent this, seismic retrofit of buildings should be necessary. The seismic retrofit of classical method is mainly used to reduce the displacement generated in the structure by strengthening stiffness and strength. However, since this method increases the base shear force of the structure, it is difficult to apply it to buildings which have weak foundation. Therefore, in this study, we propose the damper system that reduces the response displacement of buildings and suppresses the increase of base shear force by using high damping rubber and steel. And the seismic performance of the damper system is verified through the experiment and the seismic analysis of the structure.