• Title/Summary/Keyword: strength, waste landfill

Search Result 81, Processing Time 0.019 seconds

Application of Particulate Grouts for Improving Strength Characteristics of Municipal Wastes (도시폐기물의 강도특성 향상을 위한 현탁액 주입의 응용)

  • Cheon, Byeong-Sik;Park, Hong-Gyu;Jang, Yeon-Su
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.59-74
    • /
    • 1997
  • This paper presents the results of the geotechnical investigation and settlement analysis of a finished waste landfill to find the possibility of the site as a construction area. Also, the variations of the strength of the municipal waste after mixing with the several types of the particulate grouts are investigated. The materials of the grouts used in the experiment are Quick Lime, Portland Cement, Slag Cement and Geocrete Cement. The results of the geotechnical investigation show that the maximum dry unit weight of the waste becomes lower and optimum moisture content higher as the age of the disposed waste is younger and the organic content is higher. The thickness of the predicted differential settlements of the waste fill has large difference from location to location and the unconfined compression strength of the grout mixed waste from the experiment was higher in the order of Geocrete Cement, Slag Cement, Portland Cement and Quick Lime.

  • PDF

Development of Landfill Material by Utilizing Waste Lime

  • Shin, Eun-Chul;Oh, Young-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.17-25
    • /
    • 1999
  • The feasibility of using waste lime, which is produced as a byproduct during the manufacture of sodium carbonate in Inchon, Korea. as a stabilization admixture with weathered granite soil was investigated. Laboratory tests were conducted to determine the chemical composition, pH, compaction characteristics, unconfined compression strength. X-ray diffraction analysis of waste lime and weathered granite soil admixtures. Based on the present tests, it appears that the admixtures are environmentally safe and can be used as landfill material.

  • PDF

The Study on Cutting-off the Leachate Leakage or Infiltration from Waste Landfill by Wall Mass Constructed in Underground (지중 시공 벽체의 매립장 침출수 차단성 연구)

  • Koh, Yong-IL
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.27-34
    • /
    • 2018
  • The effect of cutting-off the leakage was identified by the cement based wall mass constructed in underground, as complete facilities for reinforcement in shear strength of landfill which was subjected to circular failure and for cutting-off the leachate from the costal waste landfill. By (1) visual inspection after underground excavating and (2) compressive strength test for core of underground wall, it could be identified that quality of wall mass constructed in underground was so effective, and by additional test, so as (3) in-situ permeability test in the hole after coring wall mass, (4) analyzing the characteristics of basic components and their profiles through the series of chemical experiments and (5) deciding the general distribution patterns from the chromatograms using GC-MS, it could be identified that watertight and cutting-off the leachate of wall mass constructed in underground was very effective. Therefore, it is concluded that five types of tests suggested in this study can judge the effect of cutting-off the leakage or infiltration of very high concentrated leachate from the waste landfill.

An Evaluation of Interface Shear Strength between Geosynthetic Clay Liner and Geomembrane (토목섬유 점토 차수재(GCL)와 지오멤브레인(GM)의 접촉 전단강도 평가)

  • 서민우;김동진;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 2002
  • Geomembrane, compacted clay liner, and geosynthetic clay liner (GCL) are widely used to prevent leachate from leaking to adjacent geo-environment at a municipal solid waste (MSW) landfill. Interface shear strength between GCL and geomembrane installed at a landfill side slope is important properties for the safe design of side liner or final cover systems. The interface shear strength between two geosynthetics was estimated by a large direct shear test in this study. The shear strength was evaluated by the Mohr-Coulomb failure criterion. The effects of normal stress, hydration or dry condition, and a hydration method were investigated. The test results show that the interface shear strength and shear behavior varied depending up on the level of normal stress, the type of geosynthetic combinations, and a hydration method. When GCLs were sheared after being hydrated under 6kPa loading, the results were consistent with those published by other researchers. Summaries of friction angles, normal stress and hydration condition is presented. These friction angles could be used as a reference value at a site where similar geosynthetics are installed.

Analysis of Factors Affecting the Slope Stability of Uncontrolled Waste Landfill (비위생 폐기물 매립지 사면의 안정성에 관한 영향인자 분석)

  • Yoo, Han-Kyu;Choi, Bong-Hyuck
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2002
  • The effects of ground water level, shear strength parameters of refuse, and geological condition of ground on the slope stability of uncontrolled waste landfill were studied. The Janbu method of slices based on the limit equilibrium method was used to calculate the minimum factor of safety with respect to slope stability of landfill. The analytical results showed that the factor of safety for a fully dried condition of landfill increased 2.4~2.8 times as great as that for a fully saturated condition of landfill. Under the condition of actual ground water level, the factor of safety linearly increased with increasing both cohesion and internal friction angle of refuse. Also, when the potential failure surface passed through the underlying layer, the factor of safety and shape of potential failure surface were found to depend on geological conditions of underlying layer.

  • PDF

Development of Bentonite Composite Liners for Landfill Sites (폐기물매립지 침출수 누출방지용 벤토나이트 복합라이너 개발)

  • 최우진;이원영;진성기;하헌중;김두영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.73-76
    • /
    • 1999
  • Soil-bentonite mixtures are frequently used as impervious for waste disposal sites. In the present work, bentonite composite liner systems(BCL) have been developed by utilizing Korean zeolitic bentonites. The geomechanical properties of the liner systems, such as strength, hydraulic conductivity, etc. have been studied. The laboratory and field test results are also be presented.

  • PDF

Strength and durability of ultra fine slag based high strength concrete

  • Sharmila, Pichaiya;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.675-686
    • /
    • 2015
  • The use of ground granulated blast furnace slag (GGBFS) from steel industries waste is showing perspective application in civil engineering as partial substitute to cement. Use of such waste conserves natural resources and minimizes the space required for landfill. The GGBFS used in the present work is of ultra fine size and hence serves as micro filler. In this paper strength and durability characteristics of ultra fine slag based high strength concrete (HSC) (with a characteristic compressive strength of 50 MPa) were studied. Cement was replaced with ultra fine slag in different percentages of 5, 10, and 15% to study the compressive strength, porosity, resistances against sulfate attack, sorptivity and chloride ion penetration. The experiments to study compressive strength were conducted for different ages of concrete such as 7, 28, 56, and 90 days. From the detailed investigations with 16 mix combinations, 10% ultra fine slag give better results in terms of strength and durability characteristics.

Applicability of SRSL(Self-Recovering Sustainable Liner) to the Landfill Final Cover System (SRSL(Self Recovering Sustainable Liner)재의 매립지 최종복토층에 대한 활용성 검토)

  • Kwon, Oh-Jung;Seo, Min-Woo;Hong, Soo-Jung;Park, Jun-Boum;Park, Soo-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.453-460
    • /
    • 2004
  • To prevent penetration of rainwater into the landfill site is the main purpose of the final cover in landfill sites. Conventional designs of landfill covers uses geotextiles such as geomembrane and GCL, and clay liners to lower the permeability of final covers of landfill sites. However, differential settlement and the variation of temperature in landfill sites cause the development of cracks or structural damage inside the final cover and it is also difficult to obtain clay - the main material of the compacted clay liner in Korea. Thus the former final cover system that suggests geomembrane and GCL or compacted clay liner has several limitations. Therefore, an alternative method is necessary and one of them is the application of SRSL(self-Recovering Sustainable Liner) material. SRSL is two different layers consist of individual materials that react with each other and form precipitates, and with this process lowers the permeability of the landfill final cover. SRSL generally is made up of two layers, so that when a internal crack occurs the reactants of the two layers migrate towards the crack and heal it by forming another liner. In this study the applicability of SRSL material for landfill final cover was examined by performing; (1) jar test to verify the formation of precipitate in the mixture of each reactants, (2) falling head test considering the field stress in order to confirm the decrease of permeability or prove that the hydraulic condctivity is lower than the regulations, (3) compression tests to judge weather if the strength satisfies the restricts for landfills, (4) freeze/thaw test to check the applicability of SRSL for domestic climate. In addition, the application of waste materials in the environmental and economical aspect was inspected, and finally the possibility of secondary contamination due to the waste materials was examined by performing elution tests.

  • PDF

Performance investigation of palm kernel shell ash in high strength concrete production

  • Mosaberpanah, Mohammad A.;Amran, Y.H. Mugahed;Akoush, Abdulrahman
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.577-585
    • /
    • 2020
  • By the increasing amount of waste materials, it eventually dumped into the environment and covering a larger area of the landfill which cause several environmental pollution problems. The utilization of Palm Kernal Shell Ash (PKSA) in concrete might bring a great benefit in addressing both environmental and economic issues. This article investigates the effect of PKSA as a partial cement replacement of High Strength Concrete (HSC). Several concrete mixtures were prepared with different PKSA of 0%, 10%, 20%, and 30% replaced by the cement mass. This procedure was replicated twice for the two different target mean strengths of 40 MPa and 50 MPa. The mixtures were prepared to test different fresh and hardened properties of HSC including slump test, the compressive strength of 3, 7, 14, 28, and 90 days, flexural strength of 28-days, drying shrinkage, density measurement, and sorptivity. It was observed 10% PKSA replacement as optimum percentage which reduced the drying shrinkage, sorptivity, and density and improved the late-age compressive strength of concrete.