• Title/Summary/Keyword: strenght reduction

Search Result 2, Processing Time 0.02 seconds

Microstructure and Mechanical Properties of Rapidly Solidified Powder Metallurgy Al-Fe-V-Si-X Alloys

  • Genkawa, Takuya;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1041-1042
    • /
    • 2006
  • High heat-resistant Al-Fe-V-Si and Al-Fe-V-Si-X rapidly solidified powder metallurgy (RS P/M) alloys have been developed under well-controlled high purity argon gas atmosphere. The $Al_{90.49}Fe_{6.45}V_{0.68}Si_{2.38}$ (at. %) RS P/M alloy exhibited high elevated-temperature strength exceeding 300 MPa and good ductility with elongation of 6 % at 573 K. Reduction of $H_2O$ partical pressure in P/M processing atmosphere led to improvement in mechanical properties of the powder-consolidated alloys under elevated-temperature service conditions. Ti addition to the Al-Fe-V-Si conduced to enhancement of the strength at room temperature. The tensile yeild strength and ultimate strenght were 545 MPa and 722 MPa, respectively.

  • PDF

Effects of Aggregate Mixing on the Strength Properties of Fire-Damaged Concrete (골재 혼입 유무가 고온수열 콘크리트의 강도 특성에 미치는 영향)

  • Kwon, Hyun-Woo;Kim, Young-Min;Heo, Young-Sun;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.133-134
    • /
    • 2021
  • In this study, the effects of aggregates on the properties of concrete as a study to determine the mechanical properties of high-temperature damaged concrete were examined. The samples to be reviewed are cement paste, mortar, and concrete, and the strength characteristics were reviewed after heating the compression strength and tensile strength properties. The increase in magnetic shrinkage at around 100℃ showed a significant drop in strength in mortar, which does not contain aggregates or has a small diameter, and after 300℃, concrete showed a sharp drop in strength due to the hydration and aggregation of cement.

  • PDF