• Title/Summary/Keyword: streamlines

Search Result 184, Processing Time 0.019 seconds

An experimental study on natural convection in the annuli between two horizontal elliptic cylinders (수평타원 환상공간에서의 자연대류에 관한 실험적 연구)

  • 이재순;서정일;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.28-35
    • /
    • 1988
  • Experimental study has been carried out on natural convection in the annuli formed by two isothermal horizontal inner and outer elliptic cylinders with uniform gap. The eccentricities of inner and outer elliptic cylinder and the gap ratio for the experimental model were 0.5078, 0.389 and 0.363 respectively. The temperature distributions were obtained through the analysis of interferograms which were taken by Mach-Zehnder interferometer in the range of Rayleigh number (Ra$_{L}$) from 0.34*10$^{4}$ to 3.07*10$^{4}$. It showed that flow was laminar when Ra$_{L}$.leg. 2.5 *10$^{4}$, while above the range of Rayleigh number we could get information on the fluctuation of interference fringe. Therefore, the upper limit of Ra$_{L}$ for the correlation equation of mean equivalent conductivity in reference(1) is confirmed. The flow pattern could be visualized by simple smoke test. The comparison of streamlines, isotherms, temperature distributions and local equivalent heat conductivity between existing numerical and present experimental results showed good agreement.ement.

Method for Importance based Streamline Generation on the Massive Fluid Dynamics Dataset (대용량 유동해석 데이터에서의 중요도 기반 스트림라인 생성 방법)

  • Lee, Joong-Youn;Kim, Min Ah;Lee, Sehoon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.27-37
    • /
    • 2018
  • Streamline generation is one of the most representative visualization methods to analyze the flow stream of fluid dynamics dataset. It is a challenging problem, however, to determine the seed locations for effective streamline visualization. Meanwhile, it needs much time to compute effective seed locations and streamlines on the massive flow dataset. In this paper, we propose not only an importance based method to determine seed locations for the effective streamline placements but also a parallel streamline visualization method on the distributed visualization system. Moreover, we introduce case studies on the real fluid dynamics dataset using GLOVE visualization system to evaluate the proposed method.

On the Variation of Resistance Components due to Air Bubble Blowing on Bulb Surface of a Ship (구상 선수 주위의 유동과 기포 공급 효과에 관한 실험적 연구)

  • Geun-Tae Yim;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.54-64
    • /
    • 1996
  • It seems that blowing air bubble out of the bulb surface of a ship of flat bottom will reduce the frictional resistance, since wetted area of the hull surface is reduced owing to air bubble staying close to the surface. To as certain this concept, at first, the limiting streamlines around the bow was observed, and local distribution of pressure and shear stress, due to the change of air-blowing position, air supply pressure, and the model speed, was investigated. It was found that the local friction was reduced near the bulb and air-bubble formations also play an important role as a drag component. This paper can be considered as a preliminary study on the drag reduction of conventional ships by the micro-bubble injection.

  • PDF

A Suggested Mechanism of Significant Stall Suppression Effects by Air Separator Devices in Axial Flow Fans

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Radial-vaned air separators show a strong stall suppression effect in an axial flow fans. From a survey of existing literature on the effects and the author's data, a possible mechanism for the significant effects has been proposed here. The stall suppression is suggested to have been achieved by a combination of the following several effects; (1) suction of blade and casing boundary layers and elimination of embryos of stall, (2) separation and straightening of reversed swirling flow from the main flow, (3) induction of the fan main flow toward the casing wall and enhancement of the outward inclination of meridional streamlines across the rotor blade row, thus keeping the Euler head increase in the decrease in fan flow rate, and (4) reinforcement of axi-symmetric structure of the main flow. These phenomena have been induced and enhanced by a stable vortex-ring encasing the blade tips and the air separator. These integrated effects appear to have caused the great stall suppression effect that would have been impossible by other types of stall prevention devices. Thus the author would like to name the device "tip-vortex-ring assisted stall suppression device".

3-D characteristics of conical vortex around large-span flat roof by PIV technique

  • Sun, Huyue;Ye, Jihong
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.663-684
    • /
    • 2016
  • Conical vortices generated at the corner regions of large-span flat roofs have been investigated by using the Particle Image Velocimetry (PIV) technique. Mean and instantaneous vector fields for velocity, vorticity, and streamlines were measured at three visual planes and for two different flow angles of $15^{\circ}$. The results indicated that conical vortices occur when the wind is not perpendicular to the front edge. The location of the leading edge corresponding to the negative peak vorticity and maximum turbulent kinetic energy was found at the center of the conical vortex. The wind pressure reaches the maximum near the leading edge roof corner, and a triangle of severe suctions zone appears downstream. The mean pressure in uniform flow is greater than that under turbulent flow condition, while a significant increase in the fluctuating wind pressure occurs in turbulent streams. From its emergence to stability, the shape of the vortex cross-section is nearly elliptical, with increasing area. The angle that forms between the vortex axis and the leading edge is much smaller in turbulent streams. The detailed flow structures and characteristics obtained through FLUENT simulation are in agreement with the experimental results. The three dimensional (3-D) structure of the conical vortices is clearly observed from the comprehensive arrangement of several visual planes, and the inner link was established between the vortex evolution process, vortex core position and pressure distribution.

A Numerical Study on the Sloshing Characteristics in a Two-dimensional Rectangular Tank Using the Level Set Method (레벨셋법을 이용한 2 차원 사각 탱크 내부의 슬로싱 특성에 관한 수치적 연구)

  • Yoon, Hyun-Sik;Lee, Jung-Min;Chun, Hwan-Ho;Lee, Hyun-Goo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.132-143
    • /
    • 2008
  • The sloshing phenomena in a two-dimensional rectangular tank are investigated using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical results, which gives a good agreement. We present the streamlines pattern, free surface shape, maximum free surface elevation and pressure fluctuation patterns in the tank under the pitch and surge motions with various frequencies. These two different motions cause the different flow structures in the tank. The time variations of surface elevation and pressure at the different locations in the tank strongly depend on the exciting frequency of tank moving.

3-D Simulation and Experiment on Particle Deflection by Dielectrophoresis (유전-전기영동 기반 입자 편향에 관한 3차원 시뮬레이션 및 실험)

  • Kim, Min-Soo;Kim, Min-Su;Seo, Yeong-Tai;Kim, Jong-Ho;Lee, Yoon-Sik;Lim, Keon-Gyu;Lee, Hyang-Beom;Park, Jae-Hyoung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.146-147
    • /
    • 2007
  • We present full 3-D simulation of dielectrophoretic (DEP) deflection of particle trajectory in micro channel and compare the simulation results with experimental results. In simulation, the particle 3-D movements along x, y and z-axis are simulated precisely, and the streamlines of particles movements and the change of particle height are investigated experimentally. Therefore, the deflection performance is investigated on the designed and fabricated deflection microchip.

  • PDF

Study of Mass and Flow Resistance in a Square Ribbed Microchannel using Lattice Boltzmann Method

  • Taher, Mohammad Abu;Kim, Heuy-Dong;Lee, Yeon-Won
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.207-214
    • /
    • 2014
  • Mass and flow resistance in a square ribbed microchannel have been studied numerically using the Lattice Boltzmann Method. It has been build up on two dimensional nine velocity vectors model with single relaxation time method called the Lattice Bhatnagor-Gross-Krook model. To analyze the roughness effect on the flow resistance namely the friction factor and mass flow has been discussed at the slip flow regime, $0.01{\leq}Kn{\leq}0.10$, where Kn is the Knudsen number. The wall roughness is considered by square microelements with a relative roughness height up to maximum 10% of channel height. The velocity profiles in terms of streamlines near the riblets are demonstrated to be responsible for the roughness effect. It is found that the roughness effect leads to increase the flow resistance with roughness height but it is decreased significantly with increasing the space between two roughness elements as well as the Knudsen number. In addition, the mass flow decreased linearly with increasing both roughness height and gap but significantly changed at the slip flow regime.

Flow and Heat Transfer Analysis for the Ventilating System in Automobile Interior with a Forced Exhaust (강제배기를 수반한 자동차 실내의 환기시스템에 대한 유동 및 열전달 해석)

  • Lee Sang-Ho;Moh Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.469-476
    • /
    • 2005
  • Numerical modeling has been carried out to investigate the two-dimensional air flow in automobile interior with a forced exhaust close to main air inlet for typical ventilation modes. The characteristics such as streamlines and temperature fields in the passenger compartment room with the forced exhaust are analyzed with comparison of the cases without a forced exhaust. The simulation results show that air flow on the floor near the front seat is increased with the forced exhaust for all ventilation modes. Flow recirculation in the cabin is most active in mode 2 with a vertical suction inlet in comparison with other two modes. In particular, less time is taken for air temperature to reach the inlet temperature due to the forced exhaust for the ventilation modes. Finally, it could be predicted that ventilating air flow is much improved with the forced exhaust in the interior Modeling results in this study can be applied to the optimal design of automobile interior fur air ventilation system.

A numerical analysis of driven cavity flow using singular finite element method (모서리특이성이 존재하는 유체유동의 특이유한요소를 이용한 수치해석적 연구)

  • ;;Lee, Jin Hee
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2971-2980
    • /
    • 1995
  • A numerical study of fluid flow in driven cavity was carried out using singular finite element method. The driven cavity problem is known to have infinite velocity gradients as well as dual velocity conditions at the singular points. To overcome such difficulties, a finite element method with singular shape functions was used and a special technique was employed to allow multiple values of velocities at the singular points. Application of singular elements in the driven cavity problem has a significant influence on the stability of solution. It was found the singular elements gave a stable solution, especially, for the pressure distribution of the entire flow field by keeping up a large pressure at the singular points. In the existing solutions of driven cavity problem, most efforts were focused on the study of streamlines and vorticities, and pressure were seldom mentioned. In this study, however, more attention was given to the pressure distribution. Computations showed that pressure decreased very rapidly as the distance from the singular point increased. Also, the pressure distribution along the vertical walls showed a smoother transition with singular elements compared to those of conventional method. At the singular point toward the flow direction showed more pressure increase compared with the other side as Reynolds number increased.