• Title/Summary/Keyword: stream stage

Search Result 306, Processing Time 0.034 seconds

A Numerical Study on the Performance of a Two-Stage Ejector-Diffuser System

  • Kong, Fanshi;Kim, Heuy Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.548-553
    • /
    • 2015
  • The conventional ejector-diffuser system makes use of high pressure primary stream to propel the secondary stream through pure shear action for the purposes of transport or compression of fluid. It has been widely used in many industrial applications such as seawater desalination, solar refrigeration, marine engineering, etc. The present study is performed numerically to study the performance of a two-stage ejector-diffuser system. The detailed flow phenomenon of the ejector-diffuser system has been critically predicted by means of the numerical approach using compressible Reynolds averaged Navier-Stokes (RANS) equations. The axi-symmetric supersonic ejector-diffuser flow has been solved by a fully implicit finite volume scheme with a two-equation k-omega turbulence model. The numerical results are validated with existing experimental data. Detailed flow physics and their contributions on ejector performance are detected to compare both single-stage and two-stage ejectors. The performance improvement on the ejector-diffuser system is discussed in terms of the mass flux ratio and the coefficient of power.

Estimation of Average Roughness Coefficients of Bocheong Stream Basin (보청천 유역의 평균조도계수 산정)

  • Jeon, Min-Woo;Lee, Hyo-Sang;Ahn, Sang-Uk;Cho, Young-Soo;Jeon, Man-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1306-1310
    • /
    • 2009
  • The roughness coefficients were estimated by the Manning's equation for the measured stage and flow velocity of Bocheong stream basin in Kum river. The relationships between the estimated roughness coefficients and the geomorphologic factors were formulated by the linear, logarithmic, exponential and power type function, thereafter correlation equations were presented. The correlation analysis was performed between the measured stream length and the basin area of Bocheong stream basin by the linear, logarithmic, exponential and power type function, and correlation equation for the stream length was given. The roughness coefficient has strong correlationship with stream slope, but low correlation coefficients with stream length and basin area. For the correlationship with the roughness coefficients and the stream slope, the logarithmic type function has the smallest correlation coefficient, on the other hand, the exponential type function has the largest correlation coefficient. For the relationship between the stream length and the basin area, the correlation coefficient of the logarithmic type function shows the smallest value, linear type function shows the largest value.

  • PDF

A comparative study on the simulation of single-stage and multi-stage refrigeration cycle using propane as a refrigerant (프로판 냉매를 활용한 단일 및 다단 냉동 사이클의 전산모사 비교 연구)

  • Noh, Sanggyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3327-3335
    • /
    • 2014
  • In this study, comparison works have been performed for single-stage and multi-stage refrigeration cycle using propane as a refrigerant in order to cool down the natural gas stream. A comparative analysis has been performed for a single, two, three and four stage refrigeration cycle using propane as a refrigerant for cooling the natural gas stream. For the simulation, natural gas feedstock properties supplied by KOGAS were utilized and Peng-Robinson equation of state model was used. As the number of compression stages increase, the condenser heat duty is decreased. The refrigeration heat duty for a four-stage refrigeration cycle is decreased by 20.36% compared to that for a single-stage refrigeration cycle. Moreover, the total refrigerant circulation rate for a four-stage refrigeration system is was reduced by 14.53% compared to the single stage refrigeration cycle. The total compression power for a four-stage compression was reduced by 41.61% compared to the single stage compression.

Ecosystem management system of Wangsuk stream region by geographical information systems (GIS를 이용한 왕숙천 유역의 생태계 관리 시스템)

  • 이웅재;원두희
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.54-60
    • /
    • 2001
  • The need and concern about ecosystem are growing rapidly. However, ecosystem management systems are still in the first stage since the data are handled locally and separately. It results in the waste of money and time. In this research, we designed and implemented ecosystem management system of stream region using geographical information system(GIS) that is able to be used to manage the natural resource efficiently. It is expected to be used as a useful tool for Improvement of environment and management of ecosystem as well as recovery of natural environment.

  • PDF

The Activation Plan of Resource Circulation of Copper through Analysis of Waste Resources Circulation Flow (동의 폐자원흐름분석을 통한 자원순환 활성화 방안)

  • Lee, Hi Sun;Woo, Jeong-Hun;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.26-36
    • /
    • 2014
  • The materials flow of copper can be analyzed into up-stream and down-stream stages based on the literature survey. Discharge and recycling stages in the down-stream have been particularly analyzed through the field survey. The waste nickel resources circulation flow may conveniently be grouped into 4 stages discharge import, collection disuse, resource recovery and product production export, the resources mainly consist of copper scrap and stainless steel scrap in 2010. The resource circulation rate of 36.83% is obtained from the above flow. Various plans are therefore, suggested in each stage to increase resource circulation rate. At discharge import stage, it is suggested to consider this kind of waste as an important resources if it is appropriately classified in detail, basides applying quota tariff to this kind of waste. At collection disuse stage, the plan of stabilizing supply and demand is suggested through the improvement of bidding system. Resources professional cycling stage crushing and grinding companies foster coexistence between large and small plans and strategies were suggested. At product production export stage, the integrated approval is suggested approval for licensing to register units as waste-treating facilities instead of exempting registration under the present condition to activate recycling industries.

Teacher-Student Architecture Based CNN for Action Recognition (동작 인식을 위한 교사-학생 구조 기반 CNN)

  • Zhao, Yulan;Lee, Hyo Jong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.99-104
    • /
    • 2022
  • Convolutional neural network (CNN) generally uses two-stream architecture RGB and optical flow stream for its action recognition function. RGB frames stream display appearance and optical flow stream interprets its action. However, the standard method of using optical flow is costly in its computational time and latency associated with increased action recognition. The purpose of the study was to evaluate a novel way to create a two sub-networks in neural networks. The optical flow sub-network was assigned as a teacher and the RGB frames as a student. In the training stage, the optical flow sub-network extracts features through the teacher sub-network and transmits the information to student sub-network for baseline training. In the test stage, only student sub-network was operational with decreased in latency without computing optical flow. Experimental results shows that our network fed only by RGB stream gets a competitive accuracy of 54.5% on HMDB51, which is 1.5 times better than that on R3D-18.

Development of Water Environmental Education Program Using Streams - Focused on ENVISION - (소하천 물 환경교육 프로그램 개발 - ENVISION을 중심으로 -)

  • Kim, Jeong-Hwa;Lee, Du-Gon
    • Hwankyungkyoyuk
    • /
    • v.20 no.4
    • /
    • pp.12-26
    • /
    • 2007
  • The purpose of this research is to develop a water environmental education (EE) program using streams, based on the core ideas of ENVISION and materializing elements that were extracted in this research. This research realized the elements and presented a model of the water EE program using a local stream. First, this research developed a basic model of a water EE program using streams by extracting 10 materializing elements and realizing the elements in 4 stage-procedural model. The 10 materializing elements were 1. experiencing the process of inquiry, 2. inquiring local environments, 3. self-directing learning and mutual interaction with colleagues, 4. collecting real data and interpreting, 5. utilizing the ICT(information and communication technology), 6. inquiring with the view point of the 'Environmental Studies for EE', 7. inquiring with the watershed concept, 8. inquiring with the integrating and the holistic view point, 9. pursuing the macroscopic understanding about environment, and 10. connecting the real world phenomena with the environmental concepts and theories. This research materialized these 10 elements in 4 stage model, following the previous ENVISION research, which are 1. preparing stage and visual assessment, 2. writing the report of the inquiry plan, 3. collecting the real data in the environment and performing the investigation, and 4. presenting the inquiry results. Second, with using this basic model, this research developed and presented a model of the specific water EE program using a case stream called 'Baig Cheon' stream, which is a local stream. This research is considered to have a considerable meaning in developing a EE program with ENVISION ideas for the watershed concept and inquiry with environmental science using local streams. The developed model can help the professional development of teachers and teacher education of water EE.

  • PDF

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

A Study on Development of Standard Technology for Post-Evaluation of Stream Project I (하천사업의 표준화된 사후 평가 기법 개발 연구 I)

  • Jang, Chorok;Song, Juil;Jang, Moon Yup;Kim, Han Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.542-550
    • /
    • 2020
  • A stream serve the functions of different water utilization, flood control, and the environment, and contributes to the development of national life and culture. On the other hand, it is difficult to efficiently evaluate various projects, such as effectiveness verification and comparison between projects, because the evaluation procedures and evaluation techniques of projects are not uniform and different for each institution. Therefore, a standardization technology was developed for a post-assessment of stream projects that can recognize stream problems and comprehensively evaluate stream-related projects. To this end, various projects, such as project evaluation techniques, national R&D projects, and social welfare projects, were compared and analyzed, and the standardization stages of the project were first suggested. In addition, based on the standardization stage, the evaluation indices for each stage were derived to develop an evaluation table that can evaluate stream-related projects comprehensively. Finally, it is possible to prevent the repeated use of failure factors in the planned projects.

Study on the Analysis of Development of Stage-Discharge Curve for Han River and Correlation between Items of Water Pollutants- Focused on Byeokgyeo Stream - (한강수계 유량곡선식 개발 및 수질오염물질 항목간 상관성 분석에 관한 연구- 벽계천 중심으로 -)

  • Hong, Sung-Ho;Ban, Jong-Seok;Jun, Hang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.394-400
    • /
    • 2012
  • We drew the stage-discharge relations of Byeokgye Stream, located in Yangpyeong-gun, Gyeonggi-do, and analysed the correlation between items of water pollutants by measuring the flow rate and water pollutants thirty-four times from April 2010 to December 2010. The results showed that it tended to be low water season from April to June and from October and December, while tending to be water season from July to September. The average flow rate was $2.137\;m^3/sec:\;0.464\;m^3/sec$ in low water season and $13.970\;m^3/sec$ in high water season. The stage-discharge curve thereon was $Q=40.107{\times}(h-1.200)^{2.877}$. As to the correlations, the correlation between the water temperature and COD was 0.58, and the correlations of SS with BOD and COD were 0.46 and 0.40 respectively. The correlation between SS and T-P was 0.73, showing higher than other items.