• Title/Summary/Keyword: stream flow rate

Search Result 400, Processing Time 0.024 seconds

Physical Habitat Assessment of Bokha Downstream Reach Considering Life Cycle Stages of Zacco platypus Using PHABSIM (PHABSIM을 이용한 복하천 하류 구간의 피라미 생애주기별 물리적 서식처 평가)

  • Lee, Hyeokjin;Park, Jinseok;Jang, Seongju;Hong, Rokgi;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.55-64
    • /
    • 2022
  • The objectives of this study were to assess physical habitat suitability of fish species for different life cycle stages and to suggest appropriate ecological stream flows in a Bokha downstream reach. A dominant species of Zacco platypus was selected as the study fish of which three stages of spawning, juvenile and adult in life cycle were considered into assessment. The stream hydraulic environment was calibrated with HEC-RAS before the PHABSIM simulation. The hydraulics of flow velocity and depth were used to estimate Weighted Usable Area (WUA) by multiplying respective habitat suitability indices with stream area. Overall the WUAs tend to be great in gentle slopes with relatively shallow water depth regions. Maximum WUAs, ie, candidate for ecological flow rates were 1 m3/s, 7 m3/s and 8 m3/s for the respective spawning, juvenile and adult stages of Zacco platypus. Since the ecological flow rates for juvenile and adult stages appeared to be is greater than the abundant flow rate (3.67 m3/s) for the study reach, additional water supply may be needed but should be cautious to avoid the spawning period of Apr through May from the stream water management perspective.

A Basic Study on the Relationship between the Environmental Characteristics and Turbidity Generation in Jaun Watershed (자운천 유역 내 환경특성과 탁류발생의 관계성에 대한 기초연구)

  • Ham, Kwang-Jun;Bae, Sun-Hak;Kim, Joon Hyun;Park, Sung-Bin;Kim, Sung-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.4
    • /
    • pp.259-270
    • /
    • 2006
  • The purpose of this study is to understand the relation between the land use status in watersheds and stream turbidity. Major water quality components (flow rate, turbidity, SS, BOD, TN, TP, etc.) of two streams (Jaun and Naerin) and the land use status for each correspondent watershed have been analyzed through the field sampling and the geographical overlaying of land use and watershed map. The detailed results of this study showed that; turbidity has been increased rapidly from 1.9 to 13.0 NTU for Jaun Stream, 0.4 to 0.7 NTU for Naerin Stream, due to the increased flow rate during the period of June. The agricultural area of the Jaun watershed was $13.5km^2$ (10.1% of the overall watershed), comparing to $2.0km^2$(1.4%) of upper watershed of Naerin stream. The forest was widely distributed along the 30m buffering zone from the center of Naerin stream, which comprised 64.14% of the whole watershed area. But in case of the Jaun, the ratio of forest was 17.84%, while the ratio of farming field was 30.33%.

Experimental Investigations of the Characteristics of the Length Variation of Kerosene-Oxygen Laminar Diffusion Flames (등유-산소 층류 확산화염의 길이 변화 특성에 관한 실험적 연구)

  • Lee, Soo-Han;Lee, Jong won;Park, Seul Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.22-27
    • /
    • 2018
  • The flame length in coaxial diffusion flame configurations was investigated when the kerosene fuel flow rate, temperature of the oxidizer stream, and inert gas concentrations in the oxidizer stream were varied. The diffusion flame was photographed using a Schlieren camera under each of the experimental conditions and the obtained images were then digitized to measure the flame length. The measured flame lengths were proportional to the kerosene fuel flow rate and increased with increasing temperature of the oxidizer stream. In addition, increases in the inert gas concentration in the oxidizer stream resulted in stretching of the flame. In particular, the flame was further elongated in the oxidizer steam diluted with helium gas. Inert substitutions in the oxidizer stream that can adjust the viscous drag are believed to be one of the important mechanisms that affect the length of the coaxial diffusion flames.

Analysis for Lubrication between Two Close Rotating Cylinders (근접하여 회전하는 두 원통 사이의 윤활유동해석)

  • 이승재;정호열;정재택
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.391-398
    • /
    • 2001
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is investigated based on Stokes'approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is also determined as the distance between two cylinders varies. Special attention is directed to the case of very small distance between two cylinders concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

Analysis for Lubrication between a Rotating Cylinder and a Translating Plate (회전하는 원통과 병진운동하는 평판사이의 윤활유동해석)

  • 정호열;정재택
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.411-417
    • /
    • 2002
  • Two dimensional slow viscous flow between a rotating cylinder and a translating plate is investigated using Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the farce and the moment exerted on the cylinder are calculated. The flow rate through the gap between the cylinder and the plate is also determined as a function of the distance between the cylinder and the plate. Special attention is directed to the case of very small distance between the cylinder and the plate concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

A study on the irrigation water pumping system of multipurpose dams by the large water ejector (대형 수이젝터를 이용한 다목적댐 관개용수 펌핑시스템에 관한 연구)

  • 윤석훈;오철;손근홍;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 1994
  • The water ejector is a low pressure high flow rate volumetric pump. It utilize the energy of a low mass flow, high velocity stream to induce a large mass flow, low velocity stream. In addition, it has a very good resistances to cavitation compared to the other type of pumps, and the maintenance cost is practically nil. There has been enormous energy loss to supply the upper part water of dam which has large potential energy as mere irrigation water in domestic multipurpose dam. The new type of energy saving system which developed through the present study can economizes over 950,000 kWh per year by mixing the upper part water of dam with the waste water by the large water ejector. This paper estimates the economical efficiency of the new type of irrigation water pumping system, and further more, represents the change of performance characteristics of large water ejector, which was adapted to this system, according to the fluctuation of upper water level that seasonally changes.

  • PDF

Experimental study of turbulent flow in a scaled RPV model by PIV technology

  • Luguo Liu;Wenhai Qu;Yu Liu;Jinbiao Xiong;Songwei Li;Guangming Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2458-2473
    • /
    • 2024
  • The turbulent flow in reactor pressure vessel (RPV) of pressurized water reactor (PWR) is important for the flow rate distribution at core inlet. Thus, it is vital to study the turbulent flow phenomena in RPV. However, the complicated fluid channel consisted of inner structures of RPV will block or refract the laser sheet of particle image velocimetry (PIV). In this work, the matched index of refraction (MIR) of sodium iodide (NaI) solution and acrylic was applied to support optical path for flow field measurements by PIV in the 1/10th scaled-down RPV model. The experimental results show detailed velocity field at different locations inside the scaled-down RPV model. Some interesting phenomena are obtained, including the non-negligible counterflow at the corner of nozzle edge, the high downward flowing stream in downcomer, large vortices above vortex suppression plate in lower plenum. And the intensity of counterflow and the strength of vortices increase as inlet flow rate increasing. Finally, the case of asymmetry flow was also studied. The turbulent flow has different pattern compared with the case of symmetrical inlet flow rate, which may affect the uniformity of flow distribution at the core inlet.

Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream (하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석)

  • Ahn, Seung-Seop;Yim, Dong-Hee;Park, Ro-Sam;Kwak, Tae-Hwa
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed (SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석)

  • Oh, Dong Geun;Chung, Se Woong;Ryu, In Gu;Kang, Moon Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.

Analysis of the Effect of Water Quality Improvement on Seomgang and South Han River by Securing the Flow during the Dry Season (갈수기 유량 확보에 따른 섬강 및 남한강 본류 갈수기 수질 개선 효과 분석)

  • Lee, Seoro;Lee, Gwanjae;Han, Jeongho;Lee, Dongjun;Kim, Jonggun;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.25-39
    • /
    • 2019
  • The water pollution Accident in the South Han River is increasing due to increase of pollutants inflow from small streams from rural areas and reduced flow rate. This study predicted the change of water quality in the main stream of the South Han River due to climate change through the linkage of watershed and water quality models. Also, This study analyzed the effect of water quality improvement on Seomgang and the South Han River by securing the flow during the dry season. According to the scenarios for securing the river flow during drought season, the river flow in the Seomgang is increased up to 2.19 times, and the water quality during the drought season was improved up to $BOD_5$ 20.5%, T-N 40.8%, T-P 53.4%. Also, the water quality of the main stream of the South Han River improved to 5.22% of $BOD_5$, 5.42% of T-N and 7.69% of T-P as the river flow was secured from the Seomgang. The result of this study confirms that securing the baseflow in the Seomgang according to the scenarios for securing the river flow during the dry season has a positive effect on the improvement of the water quality of the rivers in the main river of the Seomgang and South Han River. The results of this study will contribute to the establishment of reasonable management to improve the water quality of the main stream of the Seomgang and South Han River.