• Title/Summary/Keyword: stream flow rate

Search Result 400, Processing Time 0.068 seconds

Analysis of the Aeroacoustic Characteristics of Cross-Flow Fan Using a Commercial CFD Code (상용 CFD 코드를 이용한 횡류홴 공력소음 특성 해석)

  • Jeon, Wan-Ho;Chung, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.289-294
    • /
    • 2002
  • In this study, performance, flow characteristics and noise of a cross-flow-fan system, used in indoor unit of the split-type air conditioner, were predicted by computational simulation. Triangular elements were used to mesh the calculation domain and quadrilateral elements were attached to the blade surfaces and walls to enhance the simulation quality. The unsteady incompressible Wavier-Stokes equations were solved using a sliding mesh technique on the interface between rotating fan region and the outside. Two stripes of velocity stream inside the cross-flow-fan were shown - the one was due to the eccentric vortex and the other was due to the normal entrance flow. As the flow rate increased, the center of the eccentric vortex moved toward the inner blade tip and rear-guide, and the exiting flow still had velocity variation along the stabilizer, which can increase the noise level. The acoustic pressure was calculated by using Lowson's equation. From the calculated acoustic pressure, it was found that the trailing edge is a dominant of acoustic generation.

  • PDF

Low-Cost IoT Sensors for Flow Measurement in Open Channels: A Comparative Study of Laboratory and Field Performance

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.172-172
    • /
    • 2023
  • The use of low-cost IoT sensors for flow measurement in open channels has gained significant attention due to their potential to provide continuous and real-time data at a low cost. However, the accuracy and reliability of these sensors in real-world scenarios are not well understood. This study aims to compare the performance of low-cost IoT sensors in the laboratory and real-world conditions to evaluate their accuracy and reliability. Firstly, a low-cost IoT sensor was integrated with an IoT platform to acquire real-time flow rate data. The IoT sensors were calibrated in the laboratory environment to optimize their accuracy, including different types of low-cost IoT sensors (HC-SR04 ultrasonic sensor & YF-S201 sensor) using an open channel prototype. After calibration, the IoT sensors were then applied to a real-world case study in the Dorim-cheon stream, where they were compared to traditional flow measurement methods to evaluate their accuracy.The results showed that the low-cost IoT sensors provided accurate and reliable flow rate data under laboratory conditions, with an error range of less than 5%. However, when applied to the real-world case study, the accuracy of the IoT sensors decreased, which could be attributed to several factors such as the effects of water turbulence, sensor drift, and environmental factors. Overall, this study highlights the potential of low-cost IoT sensors for flow measurement in open channels and provides insights into their limitations and challenges in real-world scenarios.

  • PDF

Empirical Study on Applicability of Phosphorus Recovery Process in Wastewater Treatment Plant (하수처리시설에서 인 회수공정의 도입 가능성에 대한 실증적 검토)

  • Park, Na-ri;Chang, Hyang-Youn;Lim, Hyun-Man;Ahn, Kwang-Ho;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.40-49
    • /
    • 2017
  • In this study, we have made the annual total phosphorus (TP) mass balance diagrams for I wastewater treatment plant by utilizing the data of flow rate and TP of each process and tried to choose the optimum unit process empirically for phosphorus recovery. For the applicability evaluation, we have suggested several quantitative indices of flow rate, TP concentration, TP load and SS. Based on the analyses of TP mass balance, it became clear for reducing TP load of the wastewater treatment plant that it is efficient to recover phosphorus from the side stream in which the amount of flow rate is just 1/16, but TP concentration and load are 78 and 4.8 times larger than those of the influent of the plant. After the detailed applicability evaluation for the side stream, it could be concluded that the unit process of waste activated sludge thickener supernatant or dehydration filtrate are appropriate. Meanwhile, we did fundamental experiments utilizing the dewatering filtrate with TP concentration of 141.5 mg/L. After adjusting pH 10 and $Ca^{2+}$ concentration 250, 500, 1000 mg/L, it was stirred slowly. As a result, the $PO_4-P$ and TP removal efficiencies were above 95 percent; the results of the experiment imply the applicability of phosphorus recovery process in a wastewater treatment plant strongly.

A Study on Taehwa River Red Tide Solution through Stream Flow (유수소통을 통한 태화강 적조해결 방안 연구)

  • Cho, Hong-Je;Yoon, Sung-Kyu
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.363-375
    • /
    • 2011
  • Recently, Water quiality of urban river largely have gotten better by virtue of sewer pipe laying and sewage treatment plants construction. or the various contaminants which is flowed in into river have generated underwater ecosystem disturbance and red tide by lack of sewage and waste water disposal facilities. With tidal river, taehwa river of ulsan metropolitan city has large river width and gradual stream bed gradient at the dry and storage period. Moreover, the flow is paralyzed due to the bridge pier protection work, consist of the mat foundation which is about 1.2km from two bridge and the contaminant is accumulated. it is caused by of the red tide generated from the several years or it activates. In this study, When flow area is largest by changing independent footing of bridge pier of two bridges and using RMA2 model, we hydraulically analyzed a variable breadth of velocity and discharge. Consequently, flow rate increased the maximum 103%, discharge was exposed to increase the maximum 61%. Directly this cannot extinguish the red tide but suppresses the red tide occurrence or can reduce. And it is determined to prevent the depositioning of the contaminant and can control fundamentally the red tide occurrence cause.

Impact Analysis of Tributaries and Simulation of Water Pollution Accident Scenarios in the Water Source Section of Han River Using 3-D Hydrodynamic Model (3차원 수리모델을 이용한 한강 상수원구간 지류영향 분석 및 수질오염사고 시나리오 모의)

  • Kim, Eunjung;Park, Changmin;Na, Mijeong;Park, Hyeon;Kim, Bogsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The Han River serves as an important water resource for the city of Seoul, Korea and in the neighboring metropolitan areas. From the Paldang dam to the Jamsil submerged weir, the 4 water intake stations that are located for the Seoul metropolitan population were under review in this study. Therefore the water quality management in this section is very important to monitor, analyze and review to rule out any safety concerns. In this study, a 3-D hydrodynamic model, EFDC (Environmental Fluid Dynamics Code), was applied to the downstream of the Paldang Dam in the Han River, which is about 23 km in length, to determine issues related to water resource management. The 3-D grid was composed of 2,168 horizontal grids and three vertical layers. In this case, the hydrodynamic model was calibrated and verified with an observed average daily water surface elevation, water temperature and flow rate data for 3 years (2013~2015). The developed EFDC model proved to reproduce the hydrodynamics of the Han River well. The composition ratios of the noted incoming flows at the monitored intake stations for 3 years and their flow patterns in the river were analyzed using the validated model. It was found that the flow of the Wangsuk Stream depended on the Paldnag dam discharge, and it was noted that the composition ratios of the stream at the intake stations changed accordingly. In a word, the Wangsuk Stream moved mainly along the right bank of the Han River under the condition of a normal dam flow. As can be seen, when the dam discharge rate was low, the incidence of lateral mixing was often seen. The scenario analyses were also conducted to predict the transport of conservative pollutants as in the case of a chemical spill accident. Generally speaking, when scenarios were applied, the arrival time and concentration of pollutants at each intake station was thus predicted.

The Distribution Characteristics of Organic Matters in the Contaminated Tributaries of Han River Region (한강권역 우심지류 하천의 유기물 분포 특성)

  • Kim, Ho-Sub;Park, Yun-Hee;Kim, Yong-Sam;Kim, Sang-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.494-502
    • /
    • 2018
  • The purpose of this study was to understand distribution characteristics of organic matters through concentration of $BOD_5$, $COD_{Mn}$ and TOC in 31 streams in Han River region, and to establish the relationship among organic matter concentration, and discharge load and flow rate. Concentration of $BOD_5$ and TOC in 22 streams were above IV grade except 9, and the average 80.9 % of total organic matter (by TOC) accounted for dissolved organic type. Correlation among organic matter parameters were higher ($r^2$ > 0.78) and the relationship between TOC and $COD_{Mn}$ concentration was higher than $BOD_5$. Ratio of biodegradable organic matter/total organic matter in the 31 streams was estimated at 41.4 % with $BOD_5$ oxidation rate, and 78.0 % with $BOD_5/COD_{Mn}$ concentration ratio. Ratio of $NBOD/BOD_5$ concentration in four sites with $BOD_5/COD_{Mn}$ concentration ratio exceeding 1 ranged from 54.5 % ~ 79.3 %. Among 979 flow rate data measured at 31 streams, 87 % of measured data was below 0.1 cms and increased water pollution under low flow conditions. Correlation between $BOD_5$ concentration and $BOD_5$ discharge load in the watershed was low, and it was revealed that several streams have more $BOD_5$ delivery load than $BOD_5$ discharge load. Results suggest that many biodegradable forms of organic matter are being introduced into the stream from pollutant sources in the watershed.

Experiment and Assessment of Ascending Capability for Management of Exotic Fish Species (외래어종 관리를 위한 소상 실험 및 평가)

  • Kang, Joon-Gu;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.265-278
    • /
    • 2016
  • In this study, an ascending capability experiment was performed with largemouth bass and bluegill, which are exotic fish species inhabiting (the freshwaters) in Korea. The experiment was performed by dividing the subject fish into four groups according to their size and at four flow rates for each group. The number of fish passing through a reference line was analyzed by recording videos, and their swimming and ascending capabilities were observed by the naked eye. The number of fish passing through the reference line did not include those returning downstream within five minutes due to the high flow rate. The flow rate used for the analysis was the mean of the flow rate values measured at the left bank, the right bank, and in the middle of the stream. The results showed that the number of exotic fish migrating upstream decreased as the flow rate increased, regardless of the species and size of the fish. The comparison between the fish species showed that the ascending capability of bass was higher than that of bluegill, but the difference was not significant when considering the difference in the size of the fish. In addition, the upper limit flow velocity allowing the ascending of the exotic fish species was 1.11 m/s, when considering the fish returning to the downstream after the upstream migration and experimental error. The results of the experiment may be used as fundamental data for the blocking of fish and the management of exotic fish species by means of a high flow rate current. Further experiments, verification, and monitoring may need to be conducted continuously to determine whether the fish are able to pass through the reference line at a high flow rate, when they attain a high or cruising velocity. Additionally, the reaction of the fish species should be investigated by considering the response to external forces as well as pressure differences due to the flow rate.

Alternatives for The Stable Operation of Wastewater Treatment Plant in Combined Sewer System during Wet Weather (합류식 하수관거 지역에서 강우시 하수처리장 적정운영방안에 관한 연구)

  • Lee, Doo-jin;Shin, Eung-Bai;Hong, Chul-ui;Ahn, Se-young
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.132-144
    • /
    • 2004
  • The purpose of this study was to evaluate alternatives for stable operation of WWTP(Wastewater Treatment Plant) with a higher rate of inflows and a higher concentration of pollutants during wet weather to minimize the pollution loads being discharged into receiving waters. 3Q(Q: dry weather flow) of a base flow is normally intercepted and flows into WWTP as it was current practice. It is revealed by simulation that the bypassing alternative of 1Q through secondary treatment and 2Q into the stream after primary treatment was as good as it is expected. The bypass pollution loads were in the range of 23.9 ~ 38.5 % of the total loads flowing into the WWTP indicating that the bypassed flows need an extra treatment such as stormwater detention reservoir, high-rate coagulation with sedimentation, and step-feed. The high-rate coagulation with sedimentation was the most effective with respect to removal of the pollution loads.

Computation and Assessment of Delivery Pollutant Loads for the Streams in the Nakdong River Basin (낙동강 소수계별 유달부하량 산정 및 평가)

  • Yoon, Young-Sam;Yu, Jae-Jeong;Kim, Moon-Su;Lee, Hae-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.277-287
    • /
    • 2006
  • Production loads of the contaminants near the Nakdong-river are, BOD : $1,006ton{\cdot}day^{-1}$, TN : $117ton{\cdot}day^{-1}$, and TP : $21ton{\cdot}day^{-1}$. Among the sources of contamination, the biggest contribution to the production load was shared by the human population, which maintains 40.7% of BOD, 44.2% of TN, and 52.5% of TP production. Similarly, among the sources of discharge load, the human population contributed 45.0% of BOD, 34.5% of TN, and 45.8% of TP. Results of flow investigation in 2001 and 2002 indicate that among the side streams, Nam-river showed the greatest average flow. In case of main stream flow, it was increased in the downstream due to the increase of the influents from the side streams. In case of BOD, COD, TOC and SS, high values were detected at Keumho-river where industrial wastewater was discharged as high level concentration. In case of the main stream, Koryoung point where direct influence of Keumho-river and Seongseo industrial complex is evident showed high BOD, COD and TOC. Oxidized nitrogen compounds and total nitrogen showed similar patterns of BOD, COD, and TOC. Especially, nitrate nitrogen was relatively high at all points. However, in case of Chlorophyll-a, relatively high values were observed at mid- and downstream areas such as Koryoung, Namjee, Soosan, Moolkeum and Hakooeun. This could be caused by the slow flow rate and the abundant nutrient salts attributed by the side streams. Relatively better water quality was observed in 2002 when the flow was relatively abundant than that in 2001. Results of investigation during 2001-2002 showed that delivery load increased as the flow reaches downstream. In 2001, delivery loads at the downstream Soosan-bridge were BOD $22,152ton{\cdot}day^{-1}$, COD $45,467ton{\cdot}day^{-1}$, TN $22,062ton{\cdot}day^{-1}$, TP $926ton{\cdot}day^{-1}$. Delivery loads in 2002 were increased due to the increase of the rainfall. They are BOD $25,876ton{\cdot}day^{-1}$, COD $64,200ton{\cdot}day^{-1}$, TN $41,101ton{\cdot}day^{-1}$, and TP $1,362ton{\cdot}day^{-1}$.

Flow Analysis of Parshall Flume Using FLOW-3D (FLOW-3D에 의한 파샬플륨 흐름 해석)

  • Oh, Byoung-Dong;Kim, Kyoung-Ho;Lee, Whan-Gi;An, Sang-Do
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.375-386
    • /
    • 2004
  • A water shortage is one of the most important factors for development and management of water resources. For reliable water shortage measurement in a stream, Korea Water Resources Corporation(KOWACO) founded five foot Parshall flume at Yong-dam experimental watershed in 2000. The Parshall flume has a specially designed shape to facilitate flow measurements by eliminating sediment deposition problem that could lead to an incorrect measurement. In this study, computational fluid dynamics(CFD) model was used to analyze flow behavior of Parshall Flume under free discharge of five headwater level cases. The flow rates computed by CFD model are compared with those by ISO's formula, USBR's formula and stage-discharge rating curves. Flow rates computed by ISO's and USBR's formula are mostly same, but flow rate by CFD model is larger than empirical value by 9% and flow rate by stage-discharge rating curves is less than empirical value by 16%.