• Title/Summary/Keyword: strain-hardening cement-based composites (SHCC)

Search Result 13, Processing Time 0.017 seconds

Mechanical Properties of Strain Hardening Cement-Based Composite (SHCC) with Recycled Materials (자원순환형 재료를 사용한 변형경화형 시멘트 복합체(SHCC)의 역학적 특성)

  • Kim, Sun-Woo;Cha, Jun-Ho;Kim, Yun-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.727-736
    • /
    • 2010
  • This paper describes results of an preliminary study to produce strain hardening cement-based composites (SHCCs)with consideration of sustainability for infrastructure applications. The aims of this study are to evaluate the influence of recycled materials on the mechanical characteristics of SHCCs, such as compressive, four-point bending, and direct tensile behaviors, and to give basic data for constitutive model for analyzing and designing infra structures with SHCCs. In this study, silica sand, cement, and PVA fibers, were partially replaced with recycled sand, fly-ash, and FET fibers in the mixture of SHCCs, respectively. Test results indicated that fly-ash could improve both bending and direct tensile performance of SHCCs due to increasing chemical bond strength at the interface between PVA fibers and cement matrices. However, SHCCs replaced with PET fibers showed much lower performance in bending and direct tensile tests due to originally low mechanical properties of own fibers, although compressive behavior is similar to PVA2.0 specimen. Also, it was noted that the recycled sand would increase elastic modulus of SHCCs due to larger grain size compared to silica sand. Based on pre-set target value to maintain the performance of SHCCs, it was concluded that the replacement ratio below 20% of fly-ash or below 50% of recycled sands would be desirable for creating sustainable SHCCs.

Mechanical Properties of Green Strain-Hardening Cement-based Composites with Recycled Materials (순환재료를 사용한 그린 변형 경화형 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Lee, Young-Oh;Nam, Sang-Hyun;Cha, Jun-Ho;Kim, Yun-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.399-400
    • /
    • 2010
  • This paper presents results of an experimental program for evaluating the mechanical properties of green strain-hardening cementitious composite (SHCC) using recycled material. Recycled poly ethylene terephthalate (PET) fiber, fly ash, and recycled sand from waste concrete are used as materials for green SHCC. Test results indicated that average tensile strength of five dumbbell-shaped specimen is 4.76MPa and average compressive and flexural strength of three specimens are 38MPa and 7.40MPa, respectively.

  • PDF

Compressive Strength and Chloride Ion Penetration Resistance of SHCC Coated by PDMS-based Penetrating Water Repellency (PDMS 흡수방지재를 적용한 SHCC의 압축강도 및 염화물이온 침투저항성)

  • Lee, Jun-Hee;Hyun, Jung-Hwan;Park, Su-Hyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.16-23
    • /
    • 2018
  • In this study, Polydimethylsiloxane (PDMS) was applied to Strain Hardening Cement Composites (SHCC) for penetrating water repellency. The penetration depth of PDMS, strength of SHCC, and chloride ion penetration resistance of SHCC were investigated. As a result of measuring penetration depth of PDMS when applying different application method, it was confirmed that all methods satisfied the requirements of KS F 4930. Although the immersion method showed the largest penetration depth, the spray method was considered to be more appropriate considering the ease of field application. Compressive strength tests showed that the penetration depth of PDMS decreased as the compressive strength of SHCC increased. The compressive strength of M4-A and M4-B specimens with large PDMS penetration depths decreased by 9.6% and 8.0%, respectively, compared with those of M4 specimens produced without PDMS. Compressive strengths of the M1-A and M1-B specimens with small PDMS penetration depths were reduced by 4% and 2.2%, respectively, compared with the M1 specimen. As a result, it can be seen that the strength reduction rate of SHCC increases as the penetration depth of PDMS increases. The chlorine ion penetration tests showed that the chlorine ion penetration resistance increases with the penetration depth of PDMS.