• Title/Summary/Keyword: strain-dependency

Search Result 126, Processing Time 0.02 seconds

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각방법에 의한 마그네슘합금의 판재성형성 개선)

  • Kang, Dae-Min;Manabe, Ken-ich
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.607-612
    • /
    • 2005
  • In this paper, warm deep drawing process with local heating and cooling technique was attempted to improve the formability of AZ31 magnesium alloy which is impossibly to form by conventional methods at room temperature by finite element method and experiment. For FE analysis, in first model with considering heat transfer, both die and blankholder were heated to 573K while the punch was kept at room temperature by cooling water. Also distribution of thickness and von Mises stress at room temperature and 498k for warm deep drawing were compared by FEM. Uniaxial tension tests at elevated temperature were done in order to obtain the temperature dependence of material constant under temperature of $293K\~573K$ and cross head velocity of $5\~500mm/min$. The phenomenological model for warm deep drawing process in this work was based on the hardening law and power law strain rate dependency. Deep drawing experiment were conducted at temperatures of room temperature, 373K, 423K, 473K, 498K, 523K, and 573K for the blank and deep drawing tools(holder and die) and at a punch speed of 10mm/min.

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design

  • Ibrahimbegovic, Adnan;Boujelben, Abir
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.233-254
    • /
    • 2018
  • In order to reduce the dependency on fossil fuels, a policy to increase the production capacity of wind turbine is set up. This can be achieved with increasing the dimensions of offshore wind turbine blades. However, this increase in size implies serious problems of stability and durability. Considering the cost of large turbines and financial consequences of their premature failure, it is imperative to carry out numerical simulations over long periods. Here, an energy-conserving time-stepping scheme is proposed in order to ensure the satisfying computation of long-term response. The proposed scheme is implemented for three-dimensional solid based on Biot strain measures, which is used for modeling flexible blades. The simulations are performed at full spatial scale. For reliable design process, the wind loads should be represented as realistically as possible, including the fluid-structure interaction (FSI) dynamic effects on wind turbine blades. However, full-scale 3D FSI simulations for long-term wind loading remain of prohibitive computation cost. Thus, the model to quantify the wind loads proposed here is a simple, but not too simple to be representative for preliminary design studies.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

Structural analysis of high-rise reinforced concrete building structures during construction

  • Song, Xiaobin;Gu, Xianglin;Zhang, Weiping;Zhao, Tingshen;Jin, Xianyu
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.513-527
    • /
    • 2010
  • This paper presents a three-dimensional finite element method based structural analysis model for structural analysis of reinforced concrete high-rise buildings during construction. The model considered the time-dependency of the structural configuration and material properties as well as the effect of the construction rate and shoring stiffness. Uniaxial compression tests of young concrete within 28 days of age were conducted to establish the time-dependent compressive stress-strain relationship of concrete, which was then used as input parameters to the structural analysis model. In-situ tests of a RC high-rise building were conducted, the results of which were used for model verification. Good agreement between the test results and model predictions was achieved. At the end, a parametric study was conducted using the verified model. The results indicated that the floor position and construction rate had significant effect on the shore load, whereas the influence of the shore removal timing and shore stiffness have much smaller. It was also found that the floors are more prone to cracking during construction than is ultimate bending failure.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

Flexural behavior of retrofitted RC columns by FRP-MF, Experimental approach

  • Mahdavi, Navideh;Tasnimi, Abbas Ali
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.347-356
    • /
    • 2019
  • Most of the recent studies have improved the efficiency of FRP jackets for increasing the compressive strength, shear strength, and ductility of reinforced concrete columns; however, the influence of FRP jackets on the flexural capacity is slight. Although new methods such as NSM (near surface mounted) are utilized to solve this problem, yet practical difficulties, behavior dependency on adhesives, and brittle failure necessitate finding better methods. This paper presents the results of an experimental study on the application of fiber-reinforced polymer fastened mechanically to the concrete columns to improve the flexural capacity of RC columns. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental program included five reinforced concrete columns retrofitted by different methods using FRP subjected to constant axial compression and lateral cyclic loading. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and good composite action of FRP and RC column was achieved. Moreover, the experimental results were compared with the results obtained from the analytical study based on strain compatibility, and good proximity was reached.

Liquefaction susceptibility of silty tailings under monotonic triaxial tests in nearly saturated conditions

  • Gianluca Bella;Guido Musso
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.247-258
    • /
    • 2024
  • Tailings are waste materials of mining operations, consisting of a mixture of clay, silt, sand with a high content of unrecoverable metals, process water, and chemical reagents. They are usually discharged as slurry into the storage area retained by dams or earth embankments. Poor knowledge of the hydro-mechanical behaviour of tailings has often resulted in a high rate of failures in which static liquefaction has been widely recognized as one of the major causes of dam collapse. Many studies have dealt with the static liquefaction of coarse soils in saturated conditions. This research provides an extension to the case of silty tailings in unsaturated conditions. The static liquefaction resistance was evaluated in terms of stress-strain behavior by means of monotonic triaxial tests. Its dependency on the preparation method, the volumetric water content, the void ratio, and the degree of saturation was studied and compared with literature data. The static liquefaction response was proved to be dependent mainly on the preparation technique and degree of saturation that, in turn, controls the excess of pore pressure whose leading role is investigated by means of the relationship between the -B Skempton parameter and the degree of saturation. A preliminary interpretation of the static liquefaction response of Stava tailings is also provided within the Critical State framework.

Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing

  • Lee, Sojeong;Chang, Ilhan;Chung, Moon-Kyung;Kim, Yunyoung;Kee, Jong
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.831-847
    • /
    • 2017
  • Conventional geotechnical engineering soil binders such as ordinary cement or lime have environmental issues in terms of sustainable development. Thus, environmentally friendly materials have attracted considerable interest in modern geotechnical engineering. Microbial biopolymers are being actively developed in order to improve geotechnical engineering properties such as aggregate stability, strength, and hydraulic conductivity of various soil types. This study evaluates the geotechnical engineering shear behavior of sand treated with xanthan gum biopolymer through laboratory direct shear testing. Xanthan gum-sand mixtures with various xanthan gum content (percent to the mass of sand) and gel phases (initial, dried, and re-submerged) were considered. Xanthan gum content of 1.0% sufficiently improves the inter-particle cohesion of cohesionless sands 3.8 times and more (up to 14 times for dried state) than in the untreated (natural) condition, regardless of the xanthan gum gel condition. In general, the strength of xanthan gum-treated sand shows dependency with the rheology and phase of xanthan gum gels in inter-granular pores, which decreases in order as dried (biofilm state), initial (uniform hydrogel), and re-submerged (swollen hydrogel after drying) states. As xanthan gum hydrogels are pseudo-plastic, both inter-particle friction angle and cohesion of xanthan gum-treated sand decrease with water adsorbed swelling at large strain levels. However, for 2% xanthan gum-treated sands, the re-submerged state shows a higher strength than the initial state due to the gradual and non-uniform swelling behavior of highly concentrated biofilms.

Crashworthiness Evaluation of Bridge Barriers Built with Hot-dip Zinc-aluminium-magnesium Alloy-coated Steel (고내식성 용융합금도금강판 적용 교량난간의 충돌성능 평가)

  • Noh, Myung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • This paper proposes road safety facilities applying Hot-dip zinc-aluminum-magnesium alloy-coated steel sheets and coils to reduce the loss of function caused by the corrosion of steel in the service state. Vehicle crash simulations and full-scale crash tests were carried out to provide reliable information on evaluating the crash performance with the products of road safety facilities built with hot-dip zinc-aluminum-magnesium alloy-coated steel. From the results of the simulations and full-scale crash tests, the impact behaviors evaluated by the three-dimensional crash simulations considering the strain-rate dependency in a constitutive model were similar to those obtained from the full-scale crash test results. The full-scale crash test results met the crashworthiness evaluation criteria; hence, the proposed bridge barrier in this paper is ready for field applications.