• Title/Summary/Keyword: strain-based approach

Search Result 428, Processing Time 0.027 seconds

Numerical analysis of offshore monopile during repetitive lateral loading

  • Chong, Song-Hun;Shin, Ho-Sung;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • Renewed interest in the long-term pile foundations has been driven by the increase in offshore wind turbine installation to generate renewable energy. A monopile subjected to repetitive loads experiences an evolution of displacements, pile rotation, and stress redistribution along the embedded portion of the pile. However, it is not fully understood how the embedded pile interacts with the surrounding soil elements based on different pile geometries. This study investigates the long-term soil response around offshore monopiles using finite element method. The semi-empirical numerical approach is adopted to account for the fundamental features of volumetric strain (terminal void ratio) and shear strain (shakedown and ratcheting), the strain accumulation rate, and stress obliquity. The model is tested with different strain boundary conditions and stress obliquity by relaxing four model parameters. The parametric study includes pile diameter, embedded length, and moment arm distance from the surface. Numerical results indicate that different pile geometries produce a distinct evolution of lateral displacement and stress. In particular, the repetitive lateral load increases the global lateral load resistance. Further analysis provides insight into the propagation of the shear localization from the pile tip to the ground surface.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim;Mohammed Sid Ahmed Houari;Smain Bezzina;Ali Merdji;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.731-738
    • /
    • 2023
  • This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

Identification of Antibiotic Resistance Genes in Orofacial Abscesses Using a Metagenomics-based Approach: A Pilot Study

  • Yeeun Lee;Joo-Young Park;Youngnim Choi
    • Journal of Korean Dental Science
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 2023
  • Purpose: Culture-based methods for microbiological diagnosis and antibiotic susceptibility tests have limitations in the management of orofacial infections. We aimed to profile pus microbiota and identify antibiotic resistance genes (ARGs) using a culture-independent approach. Materials and Methods: Genomic DNA samples extracted from the pus specimens of two patients with orofacial abscesses were subjected to shotgun sequencing on the NovaSeq system. Taxonomic profiling and prediction of ARGs were performed directly from the metagenomic raw reads. Result: Taxonomic profiling revealed obligate anaerobic polymicrobial communities associated with infections of odontogenic origins: the microbial community of Patient 1 consisted of one predominant species (Prevotella oris 74.6%) with 27 minor species, while the sample from Patient 2 contained 3 abundant species (Porphyromonas endodontalis 33.0%; P. oris 31.6%; and Prevotella koreensis 13.4%) with five minor species. A total of 150 and 136 putative ARGs were predicted in the metagenome of each pus sample. The coverage of most predicted ARGs was less than 10%, and only the CfxA2 gene identified in Patient 1 was covered 100%. ARG analysis of the seven assembled genome/metagenome datasets of P. oris revealed that strain C735 carried the CfxA2 gene. Conclusion: A metagenomics-based approach is useful to profile predominantly anaerobic polymicrobial communities but needs further verification for reliable ARG detection.

Geometrically Nonlinear Analysis of Hinged Cylindrical Laminated Composite Shells (활절로 지지된 원통형 적층복합쉘의 기하학적 비선형 해석)

  • Han, Sung-Cheon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • In the present study, an Element-Based Lagrangian Formulation for the nonlinear analysis of shell structures is presented. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the anisotropic composite material. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Numerical examples for laminated composite curved shells presented herein clearly show the validity of the present approach and the accuracy of the developed shell element.

Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (II) -Optimum Process Design- (직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (II) -공정 변수 최적화-)

  • Kim, Se-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2262-2269
    • /
    • 2002
  • Process optimization is carried out to determine process parameters which satisfy the given design requirement and constraint conditions in sheet metal forming processes. Sensitivity -based-approach is utilized for the optimum searching of process parameters in sheet metal forming precesses. The scheme incorporates an elasto-plastic finite element method with shell elements . Sensitivities of state variables are calculated from the direct differentiation of the governing equation for the finite element analysis. The algorithm developed is applied to design of the variablc blank holding force in deep drawing processes. Results show that determination of process parameters is well performed to control the major strain for preventing fracture by tearing or to decrease the amount of springback for improving the shape accuracy. Results demonstrate that design of process parameters with the present approach is applicable to real sheet metal forming processes.

Plastic energy approach prediction of fatigue crack growth

  • Maachou, Sofiane;Boulenouar, Abdelkader;Benguediab, Mohamed;Mazari, Mohamed;Ranganathan, Narayanaswami
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.885-899
    • /
    • 2016
  • The energy-based approach to predict the fatigue crack growth behavior under constant and variable amplitude loading (VAL) of the aluminum alloy 2024 T351 has been investigated and detailed analyses discussed. Firstly, the plastic strain energy was determined per cycle for different block load tests. The relationship between the crack advance and hysteretic energy dissipated per block can be represented by a power law. Then, an analytical model to estimate the lifetime for each spectrum is proposed. The results obtained are compared with the experimentally measured results and the models proposed by Klingbeil's model and Tracey's model. The evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading.

Introduction to the Positional Release Techniques (PRT), as a Yin-yang Balance Based Approach (음양균형의학으로서의 자세이완기법(PRT) 개요)

  • Yin, Chang Shik
    • Journal of TMJ Balancing Medicine
    • /
    • v.8 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • Positional Release Techniques (PRTs) are an umbrella term for manual therapies harnessing spontaneous musculoskeletal balancing mechanism of the body facilitated by finding and maintaining therapeutic position. PRT has its origin in the Strain Counterstrain (SCS) technique by Dr. Jones but encompasses diverse related techniques that stemmed off from the SCS. PRT emphasizes postural balance within the body and innate healing potential of the body including the postural balance of the temporomandibular joint (TMJ). This study briefly reviews concepts, history, and contemporary study reports on PRT with a focus on the yin-yang balance based approach of PRT.

  • PDF

Numerical prediction of bursting failure in bulge forming using a seamed tube (심용접 튜브를 사용한 벌지 성형에서의 터짐불량 예측)

  • Kim, J.;Kim, Y.W;B.S. Kang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.240-243
    • /
    • 2003
  • Finite element analyses for bursting failure prediction in bulge forming under combined internal pressure and independent axial feeding are carried out. By means of the FEM combined with Oyane's ductile fracture criterion based on Hills quadratic plastic potential, the forming limit and bursting pressure level are investigated for a seamed tube that comprises of weldment, heat affected zone(HAZ) and base material parts. Especially, in order to determine the material property of HAZ tensile tests for the base material and the weld metal are executed based on iso-strain approach. Finally, through a series of bulge forming simulations with consideration of the weldment and HAZ it is concluded that the proposed method would be able to predict the bursting pressure and fracture initiation site more realistically, so the approach can be extended to a wide range of practical bulge forming processes.

  • PDF

Finite element modeling of reinforced and prestressed concrete panels under far-field blast loads using a smeared crack approach

  • Andac Lulec;Vahid Sadeghian;Frank J. Vecchio
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.725-738
    • /
    • 2024
  • This study presents a macro-modeling procedure for nonlinear finite element analysis of reinforced and prestressed concrete panels under blast loading. The analysis procedure treats cracked concrete as an orthotropic material based on a smeared rotating crack model within the context of total-load secant stiffness-based formulation. A direct time integration method compatible with the analysis formulation is adapted to solve the dynamic equation of motion. Considerations are made to account for strain rate effects. The analysis procedure is verified by modeling 14 blast tests from various sources reported in the literature including a blast simulation contest. The analysis results are compared against those obtained from experiments, simplified single-degree-of-freedom (SDOF) methods, and sophisticated hydrocodes. It is demonstrated that the smeared crack macro-modeling approach is a viable alternative analysis procedure that gives more information about the structural behavior than SDOF methods, but does not require detailed micro-modeling and extensive material characterization typically needed with hydrocodes.