• Title/Summary/Keyword: strain sensitivity

Search Result 660, Processing Time 0.027 seconds

Estimation of Mechanical Properties of Mg Alloy at High Temperature by Tension and Compression Tests (인장 및 압축실험을 통한 마그네슘 합금의 고온 물성 평가)

  • Oh S. W.;Choo D. K.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.69-72
    • /
    • 2005
  • The crystal structure of magnesium is hexagonal close-packed (HCP), so its formability is poor at room temperature. But formability is improved in high temperature with increasing of the slip planes. Purpose of this paper is to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature is increased, yield${\cdot}$ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) are decreased. But strain rate sensitivity (m) is increased. As strain-rate increased, yield${\cdot}$ultimate strength, K-value, and work hardening exponent (n) are increased. Also, microstructures of grains fine away at high strain-rate. These results will be used in simulations and manufacturing factor for warm and hot forming process.

  • PDF

Combined hardening and localized failure with softening plasticity in dynamics

  • Do, Xuan Nam;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.115-136
    • /
    • 2015
  • We present for one-dimensional model for elastoplastic bar with combined hardening in FPZ - fracture process zone and softening with embedded strong discontinuities. The simplified version of the model without FPZ is directly compared and validated against analytical solution of Bazant and Belytschko (1985). It is shown that deformation localizes in an area which is governed by the chosen element size and therefore causes mesh sensitivity and that the length of the strain-softening region tends to localize into a point, which also agrees with results obtained by stability analysis for static case. Strain increases in the softening domain with a simultaneous decrease of stress. The problem unloads elastically outside the strain-softening region. The more general case with FPZ leads to more interesting results that also account for induced strain heterogeneities.

Measurement of Pile Load Transfer using Optical Fiber Sensors (광섬유 센서에 의한 말뚝 하중전이 측정)

  • 오정호;이원제;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.397-404
    • /
    • 1999
  • It is essential to measure load transfer mechanism of pile to check the appropriateness of assumptions made for design purpose and to continuously monitor the behavior of pile foundation. Through many attempts to monitor the behavior of super-structure in civil engineering area using several optical fiber sensors have been made, application of optical fiber sensor technology on pile foundation has not been tried up to now. Load transfer of model piles during compression loading was measured by optical fiber sensors and compared with the measurement by strain gauges. Fiber Bragg Grating(FBG) sensor system was used since it has many advantages, such as easy multiplexing, high sensitivity, and simple fabrication. Besides the model pile tests, uniaxial tension test of steel bar and compression tests of mortar specimen were carried out to evaluate the performance of FBG sensors in embedded environments. The shift of refilming wavelength due to the strain in FBG sensor is converted to the strain at sensor location and the dependence between them is 1.28 pm/${\mu}$ strain. FBG sensors embedded in model pile showed a better survivability than strain gauges. Measured results of load transfer by both FBG sensors and strain gauges were similar, but FBG sensors showed a smoother trend than those by strain gauge. Based on the results of model pile test, it was concluded that the use of FBG sensor for strain measurement in pile has a great potential for the analysis of pile load transfer.

  • PDF

The Fabrication of a Micromachined Ceramic Thin-Film Pressure Sensor with High Overpressure Tolerance (과부하 방지용 마이크로머시닝 세라믹 박막형 압력센서의 제작)

  • Lim, Byoung-Kwon;Choi, Sung-Kyu;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.731-734
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Ta-N thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability. The sensitivity is $1.097{\sim}1.21mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Sensitivity of SNF transport cask response to uncertainty in properties of wood inside the impact limiter under drop accident conditions

  • Lee, Eun-ho;Ra, ChiWoong;Roh, Hyungyu;Lee, Sang-Jeong;Park, No-Choel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3766-3777
    • /
    • 2022
  • It is essential to ensure the safety of spent nuclear fuel (SNF) transport cask in drop situation that is included in transport accident scenarios. The safety of the drop situation is affected by the impact absorption performance of impact limiters. Therefore, when designing an impact limiter, the uncertainty in the material properties that affect the impact absorption performance must be considered. In this study, the material properties of the wood inside the impact limiter were selected as the variables for a parametric study. The sensitivity analysis of the drop response of the SNF transport cask with impact limiter was performed. The minimum wood strength required to prevent a direct collision between the cask and floor was derived from the analysis results. In addition, the plastic strain response was analyzed and strain-based evaluation was performed. Based on this result, the critical values of wood properties that change the impact dynamic characteristics were investigated. Finally, the optimal material properties of wood were obtained to secure the structural safety of the SNF transport cask. The results of this study can contribute to the development of SNF transport cask, thereby ensuring safety in transport accident conditions.

Investigation on vibration behavior of a high-speed railway bridge based on monitoring data

  • Qingxin Zhu;Hao Wang;Billie F. Spencer Jr
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.585-599
    • /
    • 2023
  • Field monitoring techniques offer an attractive approach for understanding bridge behavior under in-service loads. However, the investigations on bridge behavior under high-speed train load using field monitoring data are limited. The focus of this study is to explore the structural behavior of an in-service long-span steel truss arch bridge based on field monitoring data. First, the natural frequencies of the structure, as well as the train driving frequencies, are extracted. Then, the train-induced bearing displacement and structural strain are explored to identify the effects of train loads and bearings. Subsequently, a sensitivity analysis is performed for the impact factor of strain responses with respect to the train speed, train weight, and temperature to identify the fundamental issues affecting these responses. Additionally, a similar sensitivity analysis is conducted for the peak acceleration. The results indicate that the friction force in bearings provides residual deformations when two consecutive trains are in opposite directions. In addition, the impact factor and peak acceleration are primarily affected by train speed, particularly near train speeds that result in the resonance of the bridge response. The results can provide additional insight into the behavior of the long-span steel truss bridges under in-service high-speed train loads.

A Comparative Study of the Detectable Methods of Residual Antibiotics in Milk (우유중 잔류 항생물질 분서방법에 관한 비교연구)

  • 백선영;김형일;박건상;김소희;권경란
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.2
    • /
    • pp.129-132
    • /
    • 1996
  • Recently, as concern about the residual antibiotics in milk increase, the detection methods of residual antibiotics used extensevely at the present time were investigated and compared to their properties and the detection limits of variable antibiotics. At first, comparactive tests of the detectable sensitivity of 4 test organisms, B. cereus, B. subtilis, M.luteus, B.stearothermophilus C-953, were performed by disc assay. As a result, B.stearothermophilus was the most sensitive strain of all other strains and showe the detect limit of 5-50 ppb for penlicillins (PCs). And also, B.subitilis was showed the more effective detection limit, 200-400 ppb, for aminoglycosides (AGs) and M.luteus was showed predominant sensitivity , 50-500 ppb for macrolides(MLs) and B.cereus was the most sensitive strain for tetracyclines (TCs) and showed the detection limit of 100-400 ppb. Therefore, each test strains were showed a different sensitivity in the detection of the different antibiotic families. When the detection limit of disc assay and other methods were compared, TTCmethod was less sensitive than other methods showing 5-50 ppb detectable lebel for PCs. Also, for the detection of other antibiotic families TTC method was showed the worst sensitivity and Delvo and Charm Farm tests were similar to the detectable properties of AGs and MLs. Although disc assay was showed the similar detection limit for PCs with Delvo and Charm Farm, it was more widely effective for the detection of kanamycin, erythromycin, chlortetracycline, doxycycline, verginiamycin and so on than Delvo or Charm Farm. CharmII test was showed the best sensitivity for the most of antibiotics except neomycin and gentamycin. But it was necessary that different tests must be performed to each antibiotic family and so it was regarded that the effectiveness of that method was low.

  • PDF

Evaluation of an elastic stiffness sensitivity of leaf type HDS (판형 홀다운스프링 집합체의 탄성강성도 민감도 평가)

  • Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1276-1290
    • /
    • 1997
  • The previous elastic stiffness formulas of leaf type holddown spring assemblies(HDSs) have been corrected and extended to be able to consider the point of taper runout for the TT-HDS and all the strain energies for both the TT-HDS and the TW-HDS based on Euler beam theory and Castigliano'stheorem. The elastic stiffness sensitivity of the leaf type holddown spring assemblies was analyzed using the derived elastic stiffness formulas and their gradient vectors obtained from the mid-point formula. As a result of the sensitivity analysis, the elastic stiffness sensitivity at each design variable is quantified and design variables having remarkable sensitivity are identified. Among the design variables, leaf thickness is identified as that of having the most remarkable sensitivity of the elastic stiffness. In addition, it was found that the sensitivity of the leaf type HDS's elastic stiffness is exponentially correlated to the leaf thickness.

Vibration fatigue prediction using design sensitivity analysis (설계 민감도 해석을 활용한 진동내구 예측방법 연구)

  • Kim, Chan-Jung;Ju, Hyung-Jun;Shin, Sung-Young;Kwon, Sung-Jin;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.488-493
    • /
    • 2011
  • Authors previously suggested the design sensitivity analysis based on transmissibility function and identified the sensitivity of measured point over the small modification of system dynamics. On the other hand, the acceleration data will not reveal the strain information at the same location and authors suggested energy isoclines that successfully predict the fatigue damage on the interesting location to overcome the drawback of acceleration over fatigue society. Both of methodologies, sensitivity analysis and fatigue damage prediction, commonly use the response acceleration response as main indicator. In this paper, authors investigate the advanced method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with finite element model of a simple notched specimen and the prediction of fatigue damage at notched location is conducted for accelerations at different measurement locations that show different sensitivity contribution, either.

  • PDF

Sensitivity Analysis for Flexural Behaviors of PSC Members (프리스트레스트 콘크리트 휨 부재의 민감도 해석)

  • Lee, Jon-Ja;Lee, Bong-Goo;Kim, Min-Joo;Lee, Yong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.183-194
    • /
    • 2002
  • A general procedure to evaluate the sensitivity of design variables to stresses and strains in PSC flexural members is proposed. To accomplish the purpose of this study, long-term losses including creep, shrinkage, and PS steel relaxation are formulated based on the equilibrium states of the deformed sectional geometry. Thereby, the formulation follows the basic steps which consider the fundamental formulas adopted by CEB-FIP, ACI, and KCI rather than the age adjusted effective modulus concept. Twenty-one design variable including the material and geometrical properties of concrete, nonprestressing steel and prestressing steel, and the geometry of the cross section are considered in the sensitivity analysis. The gradients of the stresses and strains needed for the sensitivity assessment are calculated in a closed format. The derived formulation is applied to the T-type section PSC beam with prestressing and nonprestressing steels for the sensitivity analysis. The analytically calculated sensitivity results are compared with those numerically calculated to ensure the validity of the proposed procedure.