• 제목/요약/키워드: strain measurement sensor

검색결과 256건 처리시간 0.024초

레이저 센서를 이용한 구조물의 변위 측정 장비 개발 (Development of a Sensor System to Measure Real Time Vibro Displacement of Civil Structure)

  • 오흥일;김희식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.823-825
    • /
    • 2003
  • A sensor system was designed to measure real time vibro displacement of civil structure. The He-Ne laser is used for the displacement measuring method, because it guarantees short time stabilization, long time output power stability. Also, it guarantees simple maintenances and repairs under actual using condition. The line CCD image sensor(Tcd-142d) is used to detect the displacement of Ne-Ne laser responding to the vibro of civil structure. For accurate measurement and comparison, CDP-50 is used. Usually CDF-50 (Strain type displacement device) is used for the standard correction device of optical measurement equipments. The data processing part is consists of Optical sensor part, Wireless data transmission device, DAQp-1200, and LapView program. The displacement data of vibro from optical sensor part inputted to wireless data transmission device and then transmitted to DAQp-1200 in main control room. DAQp-1200 performs A/D conversion for the receiving data. After that the converted data inputted to computer system using LapView program for user display. The significance of this paper is to develope a convenient, accurate and lost saving real time displacement measurement system for the civil structure.

  • PDF

장대사면 내 억지말뚝의 억제효과 (현장 Case-Study 중심으로) (Reinforcing Effects of Micro-Piles in a high Cut Slope)

  • 정성윤;김경태;장기태;한희수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.374-381
    • /
    • 2002
  • Several sensor systems are used to estimate the reinforceing effect of pile in hihg cut slopes, and to find a failure zone in slopes effectively. Inclinometer, extensometer and V/W sensor have shown a great potentiality to serve real time health monitoring of the slope structures. They were embedded or attached to the structures, we conducted field tests and test results have shown great solutions for sensor systems of Civil Engineering Smart Structures. This research is to seek for the relationships among the slope movement and the reinforceing effect of pile, and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the relationships. Also, the relationships between temperature and reinforceing effect of pile, and the strain distribution are estimated in this paper.

  • PDF

광섬유센서를 이용한 원자력 발전소 격납구조물의 (System Integration Test System Integration Test of Containment Structure of Nuclear Power Plant Using Fiber Optic Sensor)

  • 김기수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.519-526
    • /
    • 2003
  • In this paper, a Fiber Bragg Grating (FRG) sensor system is described and FBGs are well-suited for long term and extremely severe experiments, where traditional strain gauges fail. In the system, a reflect wave-length measurement method which employs a tunable light source to find out the center wave-length of FBG sensor is used. We apply the FBG system to nuclear energy Power Plant for structural integrity test to measure the displacement of the structure under designed pressure and to check the elasticity of the structure by measuring the residual strain. The system works very well and it is expected that it can be used for a real-time strain. temperature and vibration detector of smart structure.

  • PDF

패브리페로 간섭계를 이용한 광섬유 전압센서의 구현 (Voltage Sensor using Fiberoptic Fabry-Perot Interferometry)

  • 김정익;전진홍;김광수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.236-238
    • /
    • 2002
  • A noble fiberoptic voltage sensor system utilizing an interferometric transducer has been introduced for high voltage measurement. The sensor system employs a fiberoptic Fabry-Perot interferometric strain sensor to convert voltage to displacement in an auxiliary movable electrode. The operating mechanism is based on the fact that the electrostatic force acting on the electrode system by the applied voltage results in strain variation on the Fabry-Perot interferometry. The experiment results show that the proposed voltage sensor has the potential to be extended to very high voltage system with appropriate auxiliary electrodes.

  • PDF

유한요소해석을 이용한 3축 힘 촉각센서 설계 및 해석 (Design and analysis of tactile sensor for tri-axial force measurement using FEM)

  • 조운기;김종호;강대임;이억섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.865-870
    • /
    • 2001
  • A sensing element for tri-axial force measurement, unit sensor of tactile sensor, was designed and evaluated by using finite element method (ANSYS). The sensor has a maximum force range of ${\pm}10$ N in the x, y, and z direction. Optimal cell structures and piezoresistor positions were determined by the strain distribution obtained from finite element analysis. Finally three Wheatstone birdge circuits were arranged and verified by $F_x$, $F_y$, and $F_z$ loading conditions. In addition, in case of sensing element subjected to thermal loading, the outputs of three bridge circuits were also evaluated.

  • PDF

Hinge rotation of a morphing rib using FBG strain sensors

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Flauto, Domenico;Mennella, Fabio
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1393-1410
    • /
    • 2015
  • An original sensor system based on Fiber Bragg Gratings (FBG) for the strain monitoring of an adaptive wing element is presented in this paper. One of the main aims of the SARISTU project is in fact to measure the shape of a deformable wing for performance optimization. In detail, an Adaptive Trailing Edge (ATE) is monitored chord- and span-wise in order to estimate the deviation between the actual and the desired shape and, then, to allow attaining a prediction of the real aerodynamic behavior with respect to the expected one. The integration of a sensor system is not trivial: it has to fit inside the available room and to comply with the primary issue of the FBG protection. Moreover, dealing with morphing structures, large deformations are expected and a certain modulation is necessary to keep the measured strain inside the permissible measure range. In what follows, the mathematical model of an original FBG-based structural sensor system is presented, designed to evaluate the chord-wise strain of an Adaptive Trailing Edge device. Numerical and experimental results are compared, using a proof-of-concept setup. Further investigations aimed at improving the sensor capabilities, were finally addressed. The elasticity of the sensor structure was exploited to enlarge both the measurement and the linearity range. An optimisation process was then implemented to find out an optimal thickness distribution of the sensor system in order to alleviate the strain level within the referred component.

헤테로코어 광파이버 노출형 센서모듈과 계측 지연현상 (Hetero-core Optical Fiber Exposure Sensor Module and Instrumentation Delay)

  • 송영용;박익태;이환우
    • 한국전산구조공학회논문집
    • /
    • 제32권6호
    • /
    • pp.401-408
    • /
    • 2019
  • 본 연구는 헤테로코어 광파이버 센서를 활용하여 콘크리트 내부에서 발생되는 변형률의 측정을 통해 콘크리트의 프리스트레스를 직접 평가할 수 있는 새로운 매립형 센서모듈 개발을 최종 목표로 하고 있다. 이를 위하여 노출형 센서모듈을 이용한 성능발현 실험결과는 가력속도 0.12, 1.80mm/min일 때 52.1, 2.6sec로 최대 약 19배의 계측 지연현상이 발생하였다. 계측 지연현상은 구조물의 실시간 변화 상태를 계측하지 못하는 경우로 실시간 계측이 가능한 센서모듈의 개발을 위해서 추가실험이 필요한 것으로 판단하였다. 계측 지연현상 원인규명 실험은 3가지의 실험을 계획하였으며, 실험결과는 마찰저항에 의한 계측 지연이 지배적으로 확인되었다. 마찰이 제거된 장치를 이용한 센서모듈의 실험결과에서는 계측 지연현상이 나타나지 않은 것으로 확인되었다.

뇌졸중환자 보행보조로봇의 무릎관절 토크측정을 위한 토크센서 개발 (Development of Torque Sensor for Measurement of Knee Joint Torque of Walking Assist Robot in Stroke Patients)

  • 박정현;김갑순
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.105-111
    • /
    • 2018
  • In this paper, a torque sensor is designed and fabricated to measure the knee joint torque of a walking assist robot for stroke patients. The torque sensor sensing part was modeled on the link of the part connected to the knee joint motor. The torque capacity of the knee joint was calculated by simulation and the size of the torque sensor sensing part was designed using the finite element method. The torque sensor was fabricated by attaching a strain gauge to the sensing part. Characteristic experiments were conducted to characterize the torque sensor, and the torque sensor was calibrated to utilize it for the control of the walking assist robot. As a result of the characteristics test, the reproducibility error and the nonlinearity error of the torque sensor were 0.03% and 0.04%, respectively. Therefore, it is considered that the developed torque sensor can be used to measure the torque applied to the knee joint when walking on a walking assist robot.

PDA와 광섬유 센서를 이용한 교량의 무선계측 시스템 개발 (Development of Wireless Measurement System for Bridge Using PDA and Fiber Optical Sensor)

  • 곽계환;황해성;장화섭;김우종;김회옥
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권1호통권53호
    • /
    • pp.88-96
    • /
    • 2009
  • 본 연구에서는 FBG 센서 및 PDA를 이용하여 새로운 안전관리 시스템인 무선 계측 시스템을 개발하기 위해 FBG 센서를 이용하여 광섬유 변위(FBG-LVDT) 센서, 광섬유 변형률(FBG-STRAIN) 센서, 광섬유 온도(FBG-TEMP) 센서 그리고 광섬유 가속도(FBG-ACC) 센서를 특별 제작하였다. 또한, 신호처리 시스템에는 적용된 FBG 센서들의 무선송신 시스템이 가능하도록 신호처리 시스템을 구성하였으며, PDA를 이용하여 원격 거리에서도 display가 가능할 수 있도록 프로그램을 개발하였다. 개발된 FBG 센서들과 무선계측 모니터링 시스템의 현장 적용성, 정확성 및 활용 가능성을 검증하고자 현장 교량에서 정적, 동적 재하시험을 실시하였다. 또한, FBG-LVDT 센서, FBG-ACC 센서에 의하여 측정된 동적 데이터들은 Meister의 진동등감각 곡선에 적용시킴으로서 교량의 진동에 대한 사용성 평가를 실시하였고 교량의 진동 사용성을 고려하여 진동 제한 기준을 제시하여 대상 교량의 진동 평가를 위한 방법을 마련하였다.

광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정 (Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler)

  • 이종민;황요하
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.