• Title/Summary/Keyword: strain gauges

검색결과 365건 처리시간 0.028초

Fabrication and Characteristics of Tantalum Nitride Thin-Film Strain Gauges (질화탄탈 박막형 스트레인 게이지의 제작과 특성)

  • Chung, Gwiy-Sang;Woo, Hyung-Soon;Kim, Sun-Chul;Hong, Dae-Sun
    • Journal of Sensor Science and Technology
    • /
    • 제13권4호
    • /
    • pp.303-308
    • /
    • 2004
  • This paper descibes on the characteristics of Ta-N(tantalum nitride) ceramic thin-film strain gauges which were deposited on Si substrates by DC reactive magnetron sputtering in an argon-nitrogen atmosphere (Ar-$(4{\sim}16%)N_{2}$) for high-temperature applications. These films were annealed in $2{\times}10^{-6}$ Torr vacuum furnace at the range of $500{\sim}1000^{\circ}C$. Optimum deposition atmosphere and annealing temperature were determined at $900^{\circ}C$ for 1 hr. in 8% $N_{2}$ gas flow ratio. Under optimum formation conditions, the Ta-N thin-film for strain gauges was obtained a high-resistivity of $768.93{\mu}{\Omega}{\cdot}cm$, a low temperature coefficient of resistance (TCR) of -84 ppm/$^{\circ}C$ and a good longitudinal gauge factor (GF) of 4.12.

New Lateral Force Measurement Method of the Wheel Plate for Railway Vehicles (철도차량용 차륜 플레이트에서의 새로운 횡압 계측방법)

  • Ham, Young-Sam;Jun, Hyun-Kyu;Seo, Jung-Won;Lee, Dong-Hyong;Kwon, Seok-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제29권6호
    • /
    • pp.621-625
    • /
    • 2012
  • Conventionally, to measure derailment coefficient of a railway wheel, strain gauges for lateral force measurement are attached to both side of the wheel. But narrow gap between railway wheel and traction motor makes it difficult to attache the strain gauges at the inner side of wheel. In this study, to overcome the hard accessibility to the strain gauge points by narrow gap, a new Wheatstone bridge connection method is presented by attaching all the strain gauges at the outer side of wheel with a new bridge connection. We evaluate the running safety of railway vehicles in accordance with railway safety regulations. The experimental results obtained shows higher sensitivity than conventional methods and the derailment coefficient measurement procedure becomes simpler.

Ceramic Pressure Sensors Based on CrN Thin-films (CrN박막 세라믹 압력센서)

  • Chung, Gwiy-Sang;Seo, Jeong-Hwan;Ryu, Gl-kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.573-576
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromium nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5∼25 %)Na$_2$). The deposited CrN thin-films with thickness of 3577${\AA}$ and annealing conditions(300$^{\circ}C$, 48 hr) in Ar-10 % N$_2$deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho$=1147.65 ${\mu}$$\Omega$cm, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF

A Study on the Deformation Measurement of Backward Extrusion Dies using Strain Gauge (스트레인 게이지를 이용한 후방압출금형의 변형측정에 관한 연구)

  • Yeo, Hong-Tae;Song, Yo-Sun;Choi, Young;Heo, Kwan-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.713-716
    • /
    • 2002
  • The dimensional accuracy of the cold forged products is strongly dependent on the elastic behavior of the die. The elastic deformation of the die is continuously changed during the process. Therefore, it is needed to measure the deformation of die. Strain gauges are used to measure the elastic strains in the die during cold backward extrusion process. The strain gauges are attached on the die surface and embedded at the interface between the die insert and the stress ring. In order to compare the results with the FE-analysis, the rigid-plastic FE-analysis of cold backward extrusion process using DEFORM-3D has been performed, and the analysis of elastic deformation of the die has been done by using ANSYS with non-linear contact.

  • PDF

Fabrication of Micromachined Ceramic Thin-Film Pressure Sensors for High Overpressure Tolerance

  • Chung, Gwiy-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 한국반도체및디스플레이장비학회 2002년도 추계학술대회 발표 논문집
    • /
    • pp.59-63
    • /
    • 2002
  • This paper reports on the fabrication process and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain-gauges for harsh environment applications. The Ta-N thin-film strain-gauges are sputter-deposited on a thermally oxidized micromachined Si diaphragms with buried cavities for overpressure tolerance. The proposed device takes advantage of the good mechanical properties of single-crystalline Si as a diaphragm fabricated by SDB and electrochemical etch-stop technology, and in order to extend the temperature range, it has relatively higher resistance, stability and gauge factor of Ta-N thin-films more than other gauges. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.21 ~ 1.097 mV/V.kgf/$\textrm{cm}^2$ in temperature ranges of 25~ $200^{\circ}C$ and a maximum non-linearity is 0.43 %FS.

  • PDF

A Study on Development of Structural Health Monitoring System for Steel Beams Using Strain Gauges (변형률계를 이용한 강재보의 건전도 평가 시스템 개발에 관한 연구)

  • Hahn, Hyun Gyu;Ahn, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제16권1호
    • /
    • pp.99-109
    • /
    • 2012
  • This study aimed to develop a Structural Health Monitoring System for steel beams in the manner of suggesting and verifying a theoretical formula for displacement estimation using strain gauges, and estimating the loading points and magnitude. According to the results of this study, it was found that when a load of 160kN (56% of the yield load) was applied, the error rate of the deflection obtained with a strain gauge at the point of maximum deflection compared to the deflection measured with a displacement meter was within 2%, and that the estimates of the magnitude and points of load application also showed the error rate of not more than 1%. This suggests that the displacement and load of steel beams can be measured with strain gauges and further, it will enable more cost-effective sensor designing without displacement meter or load cell. The Structural Health Monitoring System program implemented in Lab VIEW gave graded warnings whenever the measured data exceeds the specified range (strength limit state, serviceability limit state, yield strain), and both the serviceability limit state and strength limit state could be simultaneously monitored with strain gauge alone.

The elastic strain analysis of forged product and die according to the forging mode (단조형식에 따른 단조품과 금형의 탄성 변형에 관한 연구)

  • Lee, D.K.;Lee, Y.S.;Kim, W.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.586-591
    • /
    • 2001
  • In the cold forging, elastic deformation of the die has been investigated to improve the accuracy of cold forged parts with F.E.M analysis using DEFORM, and with experiments using strain gauges. In the experiments, initial billet was selected to easily find the effect of elastic deformation according to the forging modes, extrusion and upsetting type, and only extrusion type. Elastic deformation of the die can be obtained by the signal from the strain gauges and this signal can be amplified by data acquisition system during the process. In the F.E.M analysis, two types of analysis are used to predict elastic strain of the die. To improve an accuracy of forged product and die dimension, this study compared with strain distribution between experiment and F.E.M analysis. As a result, the history of the deformation of the die and elastic recovery of forged product can be obtained by the elastic strain analysis of forged product and die according to the forging modes.

  • PDF

A Study of the Measurement of Nonwoven Geotextile Deformation with Strain Gauges (스트레인 게이지를 이용한 부직포의 변형거동 계측에 관한 연구)

  • Won, Myoung-Soo;Kim, You-Seong;Kim, Hyeong-Joo;Park, Byung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • 제23권4호
    • /
    • pp.25-32
    • /
    • 2007
  • Because of the increasing use of clayey soil as the backfill in reinfurced soil structures and embankments, nonwoven geotextiles of drain capability have been receiving much attention. However, there are few studies on the deformation behavior analysis of nonwoven geotextiles in reinforced soil structures in the site because nonwoven geotextiles which have low tensile stiffness and higher deformability than geogrids and woven geotextiles, are difficult to measure their deformation by using strain gauges. In this study, it was suggested that a new and more convenient method could measure the deformation behaviour of nonwoven geotextile using a strain gauge and examine the availability of the method by conducting laboratory tests and applying to two geosynthetics reinforced soil (GRS) walls in the site. The result of wide-width tensile test conducted under confining pressure of 70 kPa shows that the local deformation of nonwoven geotextile to be measured with strain gauges has a similar pattern to the total deformation measured with LVDT. In the GRS walls, nonwoven geotextile shows a larger deformation range than the woven geotextile and geogrid. However, the deformation patterns of these three reinforcement materials are similar. The function of strain gauges attached to nonwoven geotextile in the walls works normally for 16 months. Therefore, the method proposed in this study for measuring nonwoven geotextile deformation using a strain gauge has proved useful.

Polymer Based Slim Tactile Sensor: Optimal Design and New Fabrication Method (폴리머 기반 슬림형 촉각센서의 최적 설계 및 새로운 공정 방법)

  • Lee, Jeong-Il;Sato, Kazuo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제17권2호
    • /
    • pp.131-134
    • /
    • 2011
  • In this study, we propose an optimal design and new fabrication method for a slim tactile sensor. Slim tactile sensor can detect 3-axial forces and has suitable flexibility for intelligent robot fingers. To amplify the contact signal, a unique table-shaped structure was attempted. A new layer-by-layer fabrication process for polymer micromachining that can make a 3D structure by using a sacrificial layer was proposed. A table-shaped epoxy sensing plate with four legs was built on top of a flexible polymer substrate. The plate can convert an applied force to a concentrated stress. Normal and shear forces can be detected by combining responses from metal strain gauges embedded in the polymer substrate. The optimal positions of the strain gauges are determined using the strain distribution obtained from finite element analysis.