• Title/Summary/Keyword: strain gauges

Search Result 366, Processing Time 0.03 seconds

Structural monitoring of wind turbines using wireless sensor networks

  • Swartz, R. Andrew;Lynch, Jerome P.;Zerbst, Stephan;Sweetman, Bert;Rolfes, Raimund
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.183-196
    • /
    • 2010
  • Monitoring and economical design of alternative energy generators such as wind turbines is becoming increasingly critical; however acquisition of the dynamic output data can be a time-consuming and costly process. In recent years, low-cost wireless sensors have emerged as an enabling technology for structural monitoring applications. In this study, wireless sensor networks are installed in three operational turbines in order to demonstrate their efficacy in this unique operational environment. The objectives of the first installation are to verify that vibrational (acceleration) data can be collected and transmitted within a turbine tower and that it is comparable to data collected using a traditional tethered system. In the second instrumentation, the wireless network includes strain gauges at the base of the structure. Also, data is collected regarding the performance of the wireless communication channels within the tower. In both turbines, collected wireless sensor data is used for off-line, output-only modal analysis of the ambiently (wind) excited turbine towers. The final installation is on a turbine with embedded braking capabilities within the nacelle to generate an "impulse-like" load at the top of the tower. This ability to apply such a load improves the modal analysis results obtained in cases where ambient excitation fails to be sufficiently broad-band or white. The improved loading allows for computation of true mode shapes, a necessary precursor to many conditional monitoring techniques.

Profile Analysis on Signal Measured Local Ice Load during Icebreaking in Arctic Sea (북극해에서의 쇄빙시 국부 빙하중 계측 신호에 대한 파형 분석)

  • Jeon, Young-Ju;Rim, Chae-Whan;Lee, Tak-Kee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.143-148
    • /
    • 2013
  • The aim of this study is to investigate the characteristics on the profile of local ice load acting on side shell of port side in bow part due to broken ice during icebreaking of ships in ice covered waters. The first Korean icebreaking research vessel 'ARAON' had a sea ice field trial in the Arctic Sea during early August, 2010, and the signals due to local ice impact measured from several strain gauges installed at bow part were gathered. It is known that these data with structural response characteristics due to local ice impact have some different characteristics with a typical hydraulic impact pressure - time history. In this study, the time history on the measured signals was analyzed and the characteristic values were presented using non-dimensional parameters.

A Study of Earth Pressure and Deformation acting on the Flexible Wall in Soft Soil (연약지반 흙막이벽에 작용하는 토압 및 변위에 관한 연구)

  • Park, Yeong-Mog;Chung, Youn-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • Recently the deep and large excavations are performed near the existing buildings in urban areas for the practical use of underground space. The earth pressure due to the excavation are varied according to the conditions of ground, the depth of excavation, the construction methods, and the method of supporting the earth pressure etc.. In this study, not only the behavior of axial load and distribution of earth pressure on the flexible wall according to stage excavation depth but also magnitude and distribution of lateral deformation, and the equivalent earth pressure from strut axial loads were analyzed by the results measured from instruments such as, load cells, strain gauges, and in-situ inclinometer, on the field of subway construction. According to the results of this study in the case of stage excavation the earth pressure of soft clayey soil is compounded with Terzaghi-Peck and Tschebotarioff.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Development and Performance Evaluation of In-situ Dynamic Stiffness Analyzer (원위치 동적강성 분석기의 개발 및 성능평가)

  • Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.41-50
    • /
    • 2019
  • Stiffness characteristic of subgrade is one of the most important aspects for the design and evaluation of pavement and railway. However, adequate field testing methods for evaluating the stiffness characteristics of the subgrade have not been developed yet. In this study, an in-situ dynamic stiffness analyzer (IDSA) is developed to evaluate the characteristics of subgrade stiffness along the depth, and its performance is evaluated in elastic materials and a compacted soil. The IDSA consists of a falling hammer system, a connecting rod, and a tip module. Four strain gauges and an accelerometer are installed at the tip of the rod to analyze the dynamic response of the tip generated by the drop of hammer. Based on the Boussinesq's method, the stiffness and Young's modulus of the specimens can be calculated. The performance of IDSA was tested on three elastic materials with different hardness and a compacted soil. For the repeatability of test performance, the dynamic signals for force and displacement of the tip are averaged from the hammer impact tests performed five times at the same drop height. The experimental results show that the peak force, peak displacement, and the duration depend on the hardness of the elastic materials. After calculating the stiffness and elastic modulus, it is revealed that as the drop height of hammer increases, the stiffness and elastic moduli of MC nylon and the compacted soil rapidly increase, while those of urethanes less increase.

Estimation of Vertical Load Capacity of PCFT Hybrid Composite Piles Using Dynamic Load Tests (동재하시험을 통한 긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 연직지지력 평가)

  • Park, Nowon;Paik, Kyuho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • To determine the optimum dynamic load test analysis for PCFT (Prestressed Concrete Filled steel Tube) hybrid composite piles that PCFT piles are connected to the top of PHC piles, the dynamic load tests and CAPWAP analyses were performed on two hybrid composite piles with steel pipe and PCFT piles as upper piles. The results of the dynamic load tests and CAPWAP analyses showed that the particle velocity measured in PCFT hybrid composite piles was equal to the wave speed of PHC piles when the strain gauges and accelerometers are attached to the surface of inner composite PHC pile after removing the steel pipe in the upper PCFT pile. In addition, when assuming that the material of that upper PCFT pile was the same as that of the lower PHC pile and the cross-sectional area of the steel pipe in upper PCFT pile was converted to that for concrete through the pile model (PM) in CAPWAP analysis, the accuracy of the CAPWAP analysis result for PCFT hybrid composite piles was very high.

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

The Behavior and Capacity of Lateral Loaded Rigid Pile Characteristics in Multi-layered Soil Conditions (다층지반에 관입된 강성말뚝의 수평 거동 및 수평 지지력 특성)

  • Kyung, Doo-Hyun;Kang, Beong-Joon;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.77-90
    • /
    • 2009
  • In this study, experimental analysis was performed about lateral load capacity and behavior of laterally loaded-bored rigid piles in muti-layered soil conditions. Lateral pile load tests were performed for muti-layerd soils consisting of different relative density. Ultimated lateral load capacities were measured from lateral load-displacement curves and compared with estimated values using theoretical methods. Bending moments and unit lateral capacity distribution of surrounding piles were measured from attached strain gauges and earth pressure sensors on the pile. It was found that ultimated lateral load capacities were different from the muti-layered soil conditions, and measured values were lower than estimated values. The bending moment distributions of the pile were similar all the time. Unit lateral capacity distributions were a little different from muti-layered soil conditions, but basically similar to the distribution proposed by Prasad and Chari (1999).

Pile and Ground Responses during Driving of a Long PHC Pile in Deep Soft Clay (대심도 연약지반에서 장대 PHC말뚝의 항타에 따른 지반과 말뚝거동)

  • Kim, Sung-Ryul;Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.131-141
    • /
    • 2007
  • Because pile behavior is governed by geotechnical characteristics of surrounding soils, it is therefore necessary to monitor ground responses during pile driving and analyze the relation between the behaviors of pile and ground. In this research, the 57 m long PHC pile was driven into deep soft clay in the Nakdong River estuary area. During and after the pile driving, the ground responses and the residual load of pile have been monitored for about a year, by using piezometers, inclinometers, level posts for surface settlement, and strain gauges in piles etc. As the results, the residual load by the negative skin friction along the pile increased with the dissipation of the excess pore pressure, which was developed by pile driving and reclamation. About 30% of the maximum residual load developed due to the dissipation of the increased excess pore pressure during the driving. It is thus emphasized that most piles driven in clay deposits need to be designed by considering negative skin friction along the pile.