• Title/Summary/Keyword: strain demand prediction

Search Result 9, Processing Time 0.025 seconds

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams

  • El-Sayed, Ahmed K.;Shuraim, Ahmed B.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.513-525
    • /
    • 2016
  • The resistance-demand approach has emerged as an effective approach for determining the shear capacity of reinforced concrete beams. This approach is based on the fact that both the shear resistance and shear demand are correlated with flexural tensile strain from compatibility and equilibrium requirements. The basic shear strength, under a given loading is determined from the intersection of the demand and resistance curves. This paper verifies the applicability of resistance-demand procedure for predicting the shear capacity of high strength concrete beams without web reinforcement. A total of 18 beams were constructed and tested in four-point bending up to failure. The test variables included the longitudinal reinforcement ratio, the shear span to depth ratio, and the beam depth. The shear capacity of the beams was predicted using the proposed procedure and compared with the experimental values. The results of the comparison showed good prediction capability and can be useful to design practice.

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A.;El-Fattah, Ahmed M. Abd;Esmaeily, Asad;Jones, John P.;Hurst, Kenneth F.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.331-347
    • /
    • 2012
  • This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.

Investigation on Improve Durability of Fiber-Reinforced High-Strength concrete (섬유보강 고강도 콘크리트의 내구성능 향상에 관한 검토)

  • Lee, Hye-Jin;Ha, Jung-Soo;Kim, Kyu-Jin;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.93-95
    • /
    • 2013
  • Recently, with the increase in the construction of ultra-high buildings and long-span structures, there is great demand for high-strength concrete which can reduce the structural weight and thickness of member sections. While developing high-strength concrete to meet performance requirements, certain issues at the design stage must also be considered. The issues include diseconomy from a great amount of per-unit cement, spalling failure by fire at ultra-high building, autogenous shrinkage caused by increased hydration activity of binder from use of a superplasticizer. Therefore, the purpose of this study is examined the strain characteristics of Fiber-reinforced-high-strength concrete(FRHSC), which differ from those of general concrete owing to autogenous shrinkage. Based on the experimental data, we proposed an autogenous shrinkage prediction model.

  • PDF

Capacity Design of Eccentrically Braced Frames through Prediction of Link Overstrength (링크의 초과강도 예측에 의한 편심가새골조의 역량설계)

  • Hong, Yunsu;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.271-278
    • /
    • 2021
  • According to the capacity design of eccentrically braced frames (EBFs), non-dissipative members such as columns, link-exterior beams, and braces must remain within the elastic region when a fully-yielded and strain-hardened link transmits force to them. The current AISC 341 standard suggests a strain-hardening factor (SHF) of 1.25 for a link under capacity design, regardless of its properties. However, all the links in an EBF are not likely to yield simultaneously to the extent to which the overstrength corresponding to 1.25 times their expected strength is attained, especially for high-rise buildings. Considering this phenomenon, a technique to predict the SHF of links at the limit state of the structure is proposed in this paper. The exact prediction of the links' SHF could save structural quantities dramatically while achieving the principle of capacity design. To validate the effectiveness of this technique, SHF values predicted by conducting linear analysis were compared with those evaluated by nonlinear analysis. Furthermore, the maximum demand-to-capacity ratios of the non-dissipative members were calculated to verify whether they would remain elastic at the limit state of the structure. Consequently, EBFs designed by the proposed method showed substantially economical quantities through the exact prediction of the SHFs, and the intention of capacity design was successfully achieved.

A Study on the Fatigue Characteristics and Life Prediction of the Tire Sidewall Rubber (타이어 사이드월 고무의 피로특성 및 수명예측에 관한 연구)

  • Moon, Byungwoo;Kim, Yongseok;Jun, Namgyu;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.629-634
    • /
    • 2017
  • In the case of the UHP (Ultra high performance) tire that the demand has increased rapidly, compared with the commonly used tire, severe deformation has been observed because of the low aspect ratio. When repeated deformations are applied to the sidewall rubber, accumulated fatigue damage may cause fatigue failure. Thus, the evaluation of the durability of the tire sidewall rubber has become a very important issue to prevent accidents that occur while the vehicle is running. However, the research and design criteria for the durability performance of the tire sidewall rubber hardly exist. In this study, we suggest a lifetime prediction formula using strain energy density obtained by performing tensile tests and fatigue tests on two different kinds of the tire sidewall compounds. Additionally, the applicability of our findings for low fuel consumption tires was reviewed by converting the fatigue life of the sidewall rubber into the expected mileage of the tire.

A Study for Shear Deterioration of Reinforced Concrete Beam-Column Joints Failing in Shear after Flexural Yielding of Adjacent Beams (보의 휨항복 후 접합부가 파괴하는 철근콘크리트 보-기둥 접합부의 전단내력 감소에 대한 해석적 연구)

  • Park, Jong-Wook;Yun, Seok-Gwang;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2012
  • Beam-column joints are generally recognized as the critical regions in the moment resisting reinforced concrete (RC) frames subjected to both lateral and vertical loads. As a result of severe lateral load such as seismic loading, the joint region is subjected to horizontal and vertical shear forces whose magnitudes are many times higher than in column and adjacent beam. Consequently, much larger bond and shear stresses are required to sustain these magnified forces. The critical deterioration of potential shear strength in the joint area should not occur until ductile capacity of adjacent beams reach the design demand. In this study, a method was provided to predict the deformability of reinforced concrete beam-column joints failing in shear after the plastic hinges developed at both ends of the adjacent beams. In order to verify the deformability estimated by the proposed method, an experimental study consisting of three joint specimens with varying tensile reinforcement ratios was carried out. The result between the observed and predicted behavior of the joints showed reasonably good agreement.