• Title/Summary/Keyword: strain concentration

Search Result 1,687, Processing Time 0.045 seconds

The Influence of NaCl and Carbonylcyanide-m-Chlorophenylhydrazone on the Production of Extracellular Proteases in a Marine Vibrio Strain

  • Kim, Young-Jae
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.156-159
    • /
    • 2004
  • In general, the salinity of the ocean is close to 3.5% and marine vibrios possess the respiratory chain-linked Na$\^$+/ pump. The influence of sodium chloride and the proton conductor carbonylcyanide m-chlo-rophenylhydrazone (CCCP) on the production of extracellular proteases in a marine Vibrio strain was examined. At the concentration of 0.5 M, sodium chloride minimally inhibited the activity of extra-cellular proteases by approximately 16%, whereas at the same concentration, the producton of extra-cellular proteases was severely inhibited. On the other hand, the production of extracellular proteases was completely inhibited by the addition of 2 ${\mu}$M CCCP at pH 8.5, where the respiratory chain-linked Na$\^$+/ pump functions.

Numerical simulation of elastic-plastic stress concentration in fibrous composites

  • Polatov, Askhad M.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.271-288
    • /
    • 2013
  • In the present study an elastic-plastic strain analysis is carried out for fibrous composites by using numerical modeling. Application of homogeneous transversely-isotropic model was chosen based on problem solution of a square plate with a circular hole under uniaxial tension. The results obtained in this study correspond to the solution of fiber model trial problem, as well as to analytical solution. Further, numerical algorithm and software has been developed, based on simplified theory of small elastic strains for transversely-isotropic bodies, and FEM. The influence of holes and cracks on stress state of complicated configuration transversely-isotropic bodies has been studied. Strain curves and plasticity zones that are formed in vicinity of the concentrators has been provided. Numerical values of effective mechanical parameters calculated for unidirectional composites at different ratios of fiber volume content and matrix. Content volume proportions of fibers and matrix defined for fibrous composite material that enables to behave as elastic-plastic body or as a brittle material. The influences of the fibrous structure on stress concentration in vicinity of holes on boron/aluminum D16, used as an example.

Isolation and Characterization of Plant Growth Promoting Rhizobacteria From Button Mushroom Compost

  • Oh, Sung-Hoon;Lee, Chang-Jung;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • An auxin-producing bacteria (strain 5-1) was isolated from button mushroom compost in Boryeong-Si, Chungcheongnam-Do. The 5-1 strain was classified as a novel strain of Enterobacter aerogenes based on chemotaxonomic and phylogenetic analyses. The isolated E. aerogenes 5-1 was confirmed to produce indole-3-acetic acid (IAA), one of the auxin hormones, using TLC and HPLC analyses. When the concentration of IAA was assessed by performing HPLC quantitative analysis, a maximum concentration of IAA of $109.9mgL^{-1}$ was detected in the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 24 h at $35^{\circ}C$. Acidification of the culture was deemed caused by an increase of IAA because a negative relationship between IAA production and pH was observed. Supplementation with a known precursor of IAA production, L-tryptophan, appeared to induce maximal production at 0.1% concentration, but it reduced production at concentrations above 0.2%. To investigate the growth-promoting effects to crops, the culture broth of E. aerogenes 5-1 was used to inoculate water cultures and seed pots of mung bean and lettuce. In consequence, adventitious root induction and root growth of mung bean and lettuce were two times higher than those of the control.

Evaluation of Notch Effect on the Dynamic Strain Aging Behavior of Carbon Steel Piping Material (탄소강 배관 재료의 DSA 거동에 미치는 노치 영향 평가)

  • Lee, Sa-Yong;Kim, Jin-Weon;Kim, Hong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.275-282
    • /
    • 2012
  • In this study, tensile tests were performed using standard and notched-bar specimens under two different displacement rates and various temperatures, in order to investigate the effects of the stress and strain concentration at the notched section on the dynamic strain aging (DSA) behavior of carbon steel piping material. In addition, finite element simulations were conducted to evaluate quantitatively the stress and strain states for both types of specimen under uniaxial tensile loading. The results showed that serration and an increase in tensile strength, which are considered to be evidence of DSA in carbon steels, can be observed from tensile tests for notched-bar specimens. It was also found that the temperature region of DSA observed in the notched-bar specimens was higher than the DSA region observed in the standard tensile specimens tested under the same displacement rate. The results of finite element analysis showed that this behavior is associated with the high strain rate at the notched section, which is caused by the stress and strain concentration.

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi;Nguyen, Huong Lan;Nguyen, Minh Hong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1005-1012
    • /
    • 2020
  • Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

Effect of Local Strain on Low Cycle Fatigue using ESPI System (ESPI System을 이용하여 측정한 국부 변형률이 저사이클 피로수명에 미치는 영향에 관한 연구)

  • Kim, Kyung-Su;Kim, Ki-Sung;Kwon, Jung-Min;Park, Seong-Mo;Kim, Beom-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.213-219
    • /
    • 2006
  • Low cycle fatigue cracks are mainly detected at discontinuous welded locations with high stresses under repeated cyclic static loads due to cargo leading and unloading. Theoretical and analytical methods have been used for evaluation of local stress and strain which have an effect on a prediction of fatigue life, but those have difficulties of considering stress concentration at notched location and complicated material behavior of welded joint or heat affected zone. Electronic speckle pattern interferometry(ESPI) system is nondestructive and non-contact measurement system which can get the relatively accurate full field strain at critical positions such as welded zone and structural discontinuous location. In this study, local strain was measured on welded cruciform joint by ESPI system and then low cycle fatigue test was performed. Effect of local strain on low cycle fatigue life was examined by measured values using ESPI system. Moreover, experimental fatigue life was compared with established S-N curves using theoretical local strain and stress calculated by Neuber's rule.

Noneffective Results of Steinernematid and Hoterorhabditid Nematodes Agains Pill bug, Armadillidium vulgare (Isopoda : Armadillidae) (Steinernematid와 Heterorhabditid 선충의 쥐며느리에 대한 비효용적결과)

  • 추호렬;이동운;허은영;김준범
    • Korean journal of applied entomology
    • /
    • v.35 no.1
    • /
    • pp.91-93
    • /
    • 1996
  • Steinemematid and heterorhabditid nematodes were not effective to control the piU bug, Armadillidium vulgare although these nematodes were able to infect pill bugs. Steinernema carpocapsae Pocheon strain and S. glaseri Dongrae strain were more effective than S. carpocapsae AU strain or Heterorhabditis bacteriophora. Nematode concentration was more important factor than host density to develop infectivity.

  • PDF

Characteristics of Culture for Emulsive Biosurfactant-Strain from the Soil (토양으로부터 분리한 유화성 생체계면활성 균주의 배양 특성)

  • 임윤택;윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.69-77
    • /
    • 1996
  • The result of isolated and selected to the strain having the emulsifying activity from soil's strain the strain was identified as Candida genus. The strain was investigated with culture condition at pH culture temperature, flow rate of air, strring rate etc., and physicochemical properties of the biosurfactant were examined. The optimum composition of medium for a strain cultivation were obtained as follow : glucose ; 100g/L, yeast extract ; 10g/L, urea ; 1.0g/L, KH$_{2}$PO$_{4}$ ; 50mg/L, MgSO$_{4}$ ; 500mg/L, and the op condition of cultivation was as follow : pH ; 3.0, temperatlue ; 24$\circ $C, strring rate ; 40rpm. The maximum yield of biosurfactant was obtained by pH ; 3.0-3.5, and temperature ; 25$\circ $C. The degree of emulsification of syntesized biosurfactant was increased clearly by increasing concentration of biosurfactant and it's stability was maintained for a long time. The surface tension of biosurfactant was varied with pH, especially it was showed that the surface tension was high at acidic pH.

  • PDF

Changes in Hardness and Damping Capacity of Aged Mg-5%Sn Alloy (시효한 Mg-5%Sn 합금의 경도와 진동감쇠능 변화)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.255-261
    • /
    • 2022
  • In this work, the strain-amplitude independent and strain-amplitude dependent damping capacities of Mg-5%Sn alloy have been investigated as a function of its age-hardening response. The hardness increased with an increase in aging time, reached a peak value after 48 h, and then it gradually decreased. The damping capacities of the Mg-5%Sn alloy exhibited a decreasing tendency in the order of solution-treated, under-aged, peakaged, and over-aged states in the strain-amplitude dependent region, whereas they increased continuously with aging time in the strain-amplitude independent region. The microstructural examination during aging revealed that the lower concentration of Sn solutes in the α-(Mg) matrix and the lower density of the Mg2Sn precipitate particles may well be the crucial factors for better damping values in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

Hydrogen Production by Biological Processes

  • Shin Jong-Hwan;Park Tai Hyun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.101-104
    • /
    • 2004
  • Among biological hydrogen production processes, fermentative processes have some advantages. In this research, the hydrogen producing bacterium was isolated from domestic landfill area and identified as Enterobacter sp. The strain was named Enterobacter sp. SNU-1453. Important parameters for the hydrogen process include pH, temperature, concentration of initial glucose, and kind of sugars. The pH of the culture medium significantly decreased as fermentation proceeded due to the accumulation of various organic acids, and this inhibited the $H_2$ production seriously. When pH was controlled at pH 7.0, hydrogen production was 2614.5 m1/1 in 17 hours. The increase of glucose concentration resulted in higher $H_2$ production. The productivity of this strain was 6.87 mmol $H_2/l$ per hi on concentration of 25g glucose/l. Enterobacter sp. SNU-1453 could utilize various sugars. These results indicate that Enterobacter sp. SNU-1453 has a high potential as a fermentative $H_2$ producer.

  • PDF