• 제목/요약/키워드: strain amplitude

검색결과 294건 처리시간 0.026초

TMCP 고장력강재와 그 용접부의 저사이클피로특성에 관한 연구 (Low cycle fatigue behaviour of TMCP steel in as-received and welded states)

  • 김영식;한명수
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.46-57
    • /
    • 1990
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics, especially, in the welded state of this steel. In case of this steel, the softening zone by welding is generated in heat affected zone in contrast with the case of conventional normalized high strength steel. This softening zone is considered to play significant roles in low cycle fatigue fracture of the welded part of this steel. In this paper, the low cycle fatigue behaviors of TMCP steel were inspected in as-received and welded state using the smooth specimen. The fatigue life-time was seperately investigated on the basis of failure of the specimen and crack initiation which is detected by differential strain method. Moreover, the low cycle fatigue characteristics of TMCP steel were quantitatively compared with those of the conventional normalized steel of same strength level.

  • PDF

생리학적인 하중 조건에서 소 상완골 연골의 기계적 특성 (In Situ Mechanical Response of Bovine Humeral Head Articular Cartilage in a Physiological Loading Environment)

  • 박성훈
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.145-150
    • /
    • 2008
  • One of the unresolved questions in articular cartilage biomechanics is the magnitude of the dynamic modulus and tissue compressive strains under physiological loading conditions. The objective of this study was to characterize the dynamic modulus and compressive strain magnitudes of bovine articular cartilage at physiological compressive stress level and loading frequency. Four bovine calf shoulder joints (ages 2-4 months) were loaded in Instron testing system under load control, with a load amplitude up to 800 N and loading frequency of 1 Hz, resulting in peak engineering stress amplitude of ${\sim}5.8\;MPa$. The corresponding peak deformation of the articular layer reached ${\sim}27%$ of its thickness. The effective dynamic modulus determined from the slope of stress versus strain curve was ${\sim}23\;MPa$, and the phase angle difference between the applied stress and measured strain which is equivalent to the area of the hystresis loop in the stress-strain response was ${\sim}8.3^{\circ}$. These results are representative of the functional properties of articular cartilage in a physiological loading environment. This study provides novel experimental findings on the physiological strain magnitudes and dynamic modulus achieved in intact articular layers under cyclical loading conditions.

전체변형률 범위에서 변형특성 평가를 위한 공내재하시험 장치 개발 (Development of Pressuremeter for Evaluation of Deformation Characteristic at Whole Strain Ranges)

  • 권기철
    • 한국지반공학회논문집
    • /
    • 제19권6호
    • /
    • pp.335-342
    • /
    • 2003
  • 엄밀한 변형해석을 위해서는 전체변형률 범위에서 신뢰성 있는 변형특성 평가가 가능한 현장시험 기법이 개발되어야 한다. 공내재하시험은 현장지반의 변형률 크기에 따른 전단탄성계수를 직접 평가할 수 있는 유일한 시험기법이다. 본 연구에서는 $10^{-5}$% ∼20%의 전체변형률 범위에 대하여 적용 가능한 공동변형 측정방법을 고안하였다. 개발된 장비의 순응성 검증을 위하여 검증토조에 대한 시험과 현장시험을 수행하였다. 개발된 장비는 $5\times 10^{-2}$% 이상의 변형률 범위에서 신뢰성 있는 전단탄성계수 측정이 가능하였다. 미소한 공동변형을 측정하는데 발생하는 주요 오차의 원인은 공동변형 측정 시스템 자체보다는 측정봉과 멤브레인 사이에서 역재하-재재하 과정에 발생하는 마찰인 것으로 판단된다.

CDSS 실험을 이용한 모래의 액상화 후 체적변형 영향인자 분석 (Analysis of Volumetric Deformation Influence Factor after Liquefaction of Sand using Cyclic Direct Simple Shear Tests)

  • 에레라 디에고;김종관;곽태영;한진태
    • 한국지반공학회논문집
    • /
    • 제40권3호
    • /
    • pp.65-75
    • /
    • 2024
  • 본 연구에서는 여러 영향 인자들이 사질토의 액상화로 인한 침하에 미치는 영향을 확인하기 위해 변형률 제어조건 하에서 반복단순직접전단시험을 수행하였다. 누적 전단 변형률, 상대밀도, 반복 하중의 형태, 시료 준비 방법 등의 다양한 인자들을 선정하였으며, 지진 하중이 발생하였을 때 인자들이 지반 침하에 미치는 영향을 분석하였다. 시험 결과, 누적 전단 변형률이 낮고 상대밀도가 높은 시료에서 더 작은 부피 변형이 발생하였다. 추가적으로 반복하중의 진폭은 부피 변형에 영향을 미쳤으나, 주파수는 시료의 부피 변형에 영향을 미치지 않는다는 사실을 확인할 수 있었다. 시료 준비 방법에 따라서도 액상화에 따른 침하가 다른 양상을 보인다는 사실을 확인하였으며, 이와 같은 결과들은 향후 액상화로 인한 침하 예측을 수행할 때 기초 연구로써 의미가 있을 것으로 기대된다.

대 변형 감지용 스트레인게이지 개발 (Development of a Strain Gauge for Sensing Large Strain)

  • 이영태;조승우
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.33-36
    • /
    • 2014
  • In this paper, a carbon strain gauge for large strain was developed. The carbon strain gauge was fabricated by forming PCB and antenna pattern using Cu/Ni/Au film and carbon resistor pattern using screen printing process on plastic film substrate. It was possible to develop low-cost disposable strain gauge since the carbon paste was cheap and the fabrication process was simple. The wireless communication type carbon strain gauge was fabricated by integrating signal processing circuit, antenna and power all together on the same substrate as a strain gauge. The wireless communication type carbon strain gauge has a merit of being available immediately at the spot without any particular system.

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

ZnSe/GaAs 이종접합 구조에서 ZnSe의 Electroreflectance 연구 (Electroreflectance Study of ZnSe in ZnSe/GaAs Heterostructure)

  • 조현준;배인호
    • 한국진공학회지
    • /
    • 제21권6호
    • /
    • pp.322-327
    • /
    • 2012
  • Molecular beam epitaxy 방법으로 성장된 ZnSe/GaAs 이종접합 구조에서 ZnSe의 electroreflectance (ER) 특성을 조사하였다. ER 측정은 변조 전압, 인가 전압 및 온도의 변화에 따라 수행하였다. 상온의 ZnSe ER 스펙트럼에서 압축 변형에 의하여 분리된 가전자대의 무거운 정공(HH: 2.609 eV) 및 가벼운 정공(LH: 2.628 eV)과 전도대 사이의 전이를 관측하였다. 인가전압이 증가함에 따라 HH 전이 신호의 크기는 점차 감소하였으나, LH 전이 신호의 크기 변화는 미미하였다. 온도에 따른 ER 스펙트럼의 변화를 통하여 변형과 열팽창 계수와의 관계를 연구하였다.

Low cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading

  • Dong, Qin;Yang, Ping;Xu, Geng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.671-678
    • /
    • 2019
  • In this paper, the low cycle fatigue failure and ratcheting behavior, as well as their interaction of AH32 steel were experimentally investigated under uniaxial cyclic loading. The effects of mean stress, stress amplitude and stress ratio on the low cycle fatigue life and ratcheting strain were discussed. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of mean stress and stress amplitude, and the increasing stress ratio would result in smaller ratcheting and larger fatigue life. Two kinds of failure modes, i.e. low cycle fatigue failure due to crack propagates and ratcheting failure due to large plastic strain will take place respectively. Based on the experimental results, considered the effect of ratcheting on fatigue life, a model with the maximum stress and ratcheting strain rate was proposed. Comparison with the experimental result showed that the new model provided a good prediction for AH32 steel.

429EM 스테인리스강의 고온 저주기 피로 거동 (Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature)

  • 이금오;윤삼손;홍성구;김봉수;이순복
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

Fractal Nature of Magnetic Colloidal Dispersion with Cobalt Iron Oxide and Metal Iron Particles

  • Yoon, Kwan Han;Lee, Young Sil
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.125-131
    • /
    • 2022
  • The microstructure of highly aggregated colloidal dispersions was investigated by probing the rheological behavior of magnetic suspensions. The dynamic moduli as functions of frequency and strain amplitude are shown to closely resemble that of colloidal gels indicating the formation of network structure. The two types of characteristic critical strain amplitudes, γc and γy, were characterized in terms of the changing microstructure. The amplitude of γc indicates the transition from linear to nonlinear viscoelasticity and depends only on particle volume fraction not magnetic interactions. The study of scaling behavior suggests that it is related to the breakage of interfloc, i.e., floc-floc structure. However, yielding strain, γy, was found to be independent of particle volume fraction as well as magnetic interaction. It relates to extensive deformation resulting in yielding behavior. The scaling of elastic constant, Ge, implies that this yielding behavior and hence γy is due to the breakage of long-range interfloc interactions. Also, the deformation of flocs due to increase strain was indicated from the investigation of the fractal nature.