• 제목/요약/키워드: strain amplitude

검색결과 294건 처리시간 0.025초

2024-T3 A1 합금의 이방성이 피로균열진전속도와 정류거동에 미치는 영향 (Effect of Anisotropy on Fatigue Crack Propagation Rate and Arrest Behavior with 2024-T3 Alumunum Alloy)

  • 오세욱;김태형;오정종
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.124-132
    • /
    • 1993
  • In order to examine the effect of anisotropy and stress ratio on fatigue crack propagation rate and opening-closing behavior and also arrest behavior by single tension peak overload, the fatigue tests of constant amplitude atress and single tension peak overload adding to cycle of constant amplitude were carried out in stress ratio of -0.4, -0.2, and 0.4 with materials of T-L and L-T directions in 2024-T3 aluminum alloy plate. Crack opening-closing begavior were measured by the compliance method using COD gage and strain gage. In case of the crack opening-closing behavior was measured by strain gage, the effect of stress ratio is unchangeable. But in the case of COD gage, that is remarkably decreased. Fictitious effective stress intensity factor(U sub(f)) and effective stress intensity factor ratio(U) in L-T direction was higher than those in T-L direction and also threshold arrest overload ratio incrased as stress ratio decreased and that of T-L direction was higher than that in L-T direction.

  • PDF

고온초전도 전동기용 계자코일의 임계전류 연구 (Study on the Critical Current of Field Coil for High Temperature Superconducting Motor)

  • 조영식;손명환;백승규;권운식;이언용;권영길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.873-875
    • /
    • 2003
  • It is well known that $I_c$ (critical current) in HTS tape is more sensitive to $B{\perp}$ (magnetic field amplitude applied perpendicular to the tape surface) than to B// (magnetic field amplitude applied parallel to the tape surface). Thus, the magnitude of $B{\perp}$ at HTS tape is important to the design of HTS motor, because it determines the operating current. In addition, the $I_c$ of HTS field coil is determined by not only the $B{\perp}$ but also stress and strain condition at given operating temperature. Therefore, at the stage of field coil design, stress and strain conditions should be considered because when the HTS tape is handled, it is necessary to know the limiting values of loading, bending and twisting to avoid any damages. The $I_c$ of field coil is calculated by 3D analysis and measured through experiments considering the $B{\perp}$ and the margin of contacts loss.

  • PDF

Probabilistic analysis of micro-film buckling with parametric uncertainty

  • Ying, Zuguang;Wang, Yong;Zhu, Zefei
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.697-708
    • /
    • 2014
  • The intentional buckling design of micro-films has various potential applications in engineering. The buckling amplitude and critical strain of micro-films are the crucial parameters for the buckling design. In the reported studies, the film parameters were regarded as deterministic. However, the geometrical and physical parameters uncertainty of micro-films due to manufacturing becomes prominent and needs to be considered. In the present paper, the probabilistic nonlinear buckling analysis of micro-films with uncertain parameters is proposed for design accuracy and reliability. The nonlinear differential equation and its asymptotic solution for the buckling micro-film with nominal parameters are firstly established. The mean values, standard deviations and variation coefficients of the buckling amplitude and critical strain are calculated by using the probability densities of uncertain parameters such as the film span length, thickness, elastic modulus and compressive force, to reveal the effects of the film parameter uncertainty on the buckling deformation. The results obtained illustrate the probabilistic relation between buckling deformation and uncertain parameters, and are useful for accurate and reliable buckling design in terms of probability.

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

신경 신장 적용 시간에 따른 신경흥분성 변화 (Changes in Nerve Excitability During Neural Stretching)

  • 이동률;이민형;엄주리;김종순
    • PNF and Movement
    • /
    • 제16권2호
    • /
    • pp.287-294
    • /
    • 2018
  • Purpose: The neurodynamic test used to implicate symptoms arising from the nerve is proposed to selectively increase the strain of the nerve without increasing the strain of adjacent tissue, although this has not yet been established in the time of nerve tension application. This study aimed to investigate the acute effects of nerve stretching time on nerve excitability using compound nerve action potential (CNAP) analysis. Methods: Thirty healthy young adults (mean age=23.10 years) with no medical history of neurological or musculoskeletal disorder voluntarily participated in this study. Nerve excitability was assessed using the median nerve conduction velocity test. The amplitude of the CNAP was measured under three conditions: resting phase (supra-maximal stimulus, without nerve stretching), baseline phase (two-thirds of the supra-maximal stimulus, without nerve stretching), and stretch phase (two-thirds of the supra-maximal stimulus, with 1-5 minutes nerve stretching). One-way repeated measures ANOVA was conducted to compare the latency and amplitude of CNAP. A post-hoc test was analyzed using the contrast test. Results: The latency was significantly delayed after 1 min. of nerve stretching in comparison with the baseline test. However, no significant difference was found during the nerve stretching (1-5 min.). The amplitude was significantly increased by nerve stretching. Conclusion: Nerve stretching can induce nerve excitability without any nerve injury. Based on the results, more than 1 min. of nerve stretching as a neurodynamic test can be a useful method in the clinical setting.

단섬유 강화 Chloroprene 고무의 동적특성 연구 (A Study on Dynamic Properties of Short-fiber Reinforced Chloroprene Rubber)

  • 이동주;류상렬
    • Composites Research
    • /
    • 제17권3호
    • /
    • pp.45-50
    • /
    • 2004
  • 계면상 조건과 섬유 함유량 변화에 따른 단섬유 강화 CR의 동적특성에 대해 주파수, 진폭 그리고 온도를 함수로 실험적 고찰을 하였다. 진폭 변형률 증가에 따라 LF는 1.33% 이상에서 약간 증가하였고, DR은 크게 감소하였다. 주파수 증가에 따라 LF는 특히 50Hz 이후 크게 감소하였고, DR은 기지고무보다 낮은 값을 보였다. 온도 증가에 따라 LF는 $65^{\circ}$에서 최대 값을 나타내고 이후 크게 감소세를 보였다. DR은 온도가 증가에 따라 기지고무 보다 낮은 값을 보였다. 일반적으로 동일한 시험 조건에서 계면상이 우수할수록 LF와 DR이 낮은 값을 보였다. 따라서 단섬유 강화고무는 진동 수비가 $\sqrt{2}$ 이하보다는 $\sqrt{2}$ 이상에서 더 큰 진동절연 효과가 있다고 할 수 있다.

실내시험 및 현장시험을 통한 지반의 비선형 변형특성 평가 (Evaluation of Nonlinear Deformational Characteristics of Soils from Laboratory and Field Tests)

  • 김동수;권기철
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.89-100
    • /
    • 1997
  • 토목구조물의 동적해석 뿐아니라 공용상태 구조물 기초의 변형해석을 위해서는 지반의 신뢰성 있는 비선형 변형특성 평가가 매우 중요하다. 변형특성 평가를 위한 현장시험으로는 저변형률 하에서 지반의 탄성계수를 결정할 수 있는 크로스흘시험이나 중간변형률 영역에서 변형률 크기에 따른 탄성계수 결정이 가능한 공내재하시험이 사용되나 전 변형률 영역에서의 탄성계수 변화를 측정하지 못하고,,하중주파수의 영향,구속압의 영향 등을 엄밀히 평가하지 못하는 단점이 있다. 공진주/비틂전단시험과 같은 실내시험에서는 저변형률 및 중간변형률을 포함하는 전변형률 영역에서의 탄성계수 측정이 가능하나 불교란시료의 채취와 시료의 대표성 확보가 매우 어려운 단점이 있다. 따라서 보다 엄밀한 현장지반의 변형률 크기에 따른 탄성계수 결정을 위하여는 각각의 실내시험과 현장시험에서의 신뢰성 있는 변형률 측정범위, 작용되는 응력의 크기, 시험이 수행되는 하중주파수 차이 등을 효과적으로 결합하여 사용하여야 한다. 본 논문에서는 지반의 비선형 변형특성을 현장 및 실내시험 결과를 효과적으로 결합하여 사용하는 방법을 제시하고, 화강풍화토 지반에서 현장시험으로 크로스흘과 공내재하시험을, 실내시험으로는 공진주/비틂 전단시험을 수행하여 현장지반의 변형특성을 결정하고, 각 시험법들의 장.단점과 신뢰성 있는 시험범위를 검토하였다. 마지막으로, 현장지반의 비선형 변형특성 평가 절차를 제시하였다.

  • PDF

천연고무의 온도에 따른 동적 점탄성 연구 (A Study of Dynamic Viscoelastic Properties on Temperatures of Natural Rubber)

  • 이범철;유길상
    • Elastomers and Composites
    • /
    • 제32권1호
    • /
    • pp.29-36
    • /
    • 1997
  • The change of elastic modulus(E'), loss modulus(E"), and loss $tangent(tan{\delta})$ were investigated on condition of double strain amplitude (DSA) at temperature of $-40{\sim}80^{\circ}C$ for carbon black filled natural rubber. E', E", and $tan{\delta}$ were increased as it closed to the glass transition temperature due to decrease of rubber network flexibility and carbon black agglomerate interaction. In the micro strain range, energy loss showed maximum value because of the chain slippage in rubber matrix, but the regeneration of carbon black agglomerate and rubber matrix affected decrease of energy loss over the mid-range strain. As a results of regression analysis, $E'\;_{max}$ correlation with ${\Delta}E'$ $(E'\;_{0.4%DSA}-E'\;_{2.0%DSA})$ showed linear relationship.

  • PDF

순수 비틀림 하중하에서 열화를 고려한 2상 스데인리스강의 저주기 피로특성 (Low Cycle Fatigue Characteristics of Duplex Stainless Steel with Degradation under Pure Torsional Load)

  • 권재도;박중철
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1897-1904
    • /
    • 2002
  • Monotonic torsional and pure torsional low cycle fatigue(LCF) test with artificial degradation were performed on duplex stainless steel(CF8M). CF8M is used in pipes and valves in nuclear reactor coolant system. It was aged at 430$^{\circ}C$ for 3600hrs. Through the monotonic and LCF test, it is found that mechanical properties(i.e., yield strength, strain hardening exponent, strength coefficient etc.) increase and fatigue life(N$\sub$f/) decreases with degradation of material. The relationship between shear strain amplitude(${\gamma}$$\sub$a/)and N$\sub$f/ was proposed.