• Title/Summary/Keyword: strain accumulation

Search Result 279, Processing Time 0.03 seconds

Mcl-PHAs Produced by Pseudomonas sp. Gl01 Using Fed-Batch Cultivation with Waste Rapeseed Oil as Carbon Source

  • Mozejko, Justyna;Wilke, Andreas;Przybylek, Grzegorz;Ciesielski, Slawomir
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.371-377
    • /
    • 2012
  • The present study describes medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production by the Pseudomonas Gl01 strain isolated from mixed microbial communities utilized for PHAs synthesis. A two-step fed-batch fermentation was conducted with glucose and waste rapeseed oil as the main carbon source for obtaining cell growth and mcl-PHAs accumulation, respectively. The results show that the Pseudomonas Gl01 strain is capable of growing and accumulating mcl-PHAs using a waste oily carbon source. The biomass value reached 3.0 g/l of CDW with 20% of PHAs content within 48 h of cultivation. The polymer was purified from lyophilized cells and analyzed by gas chromatography (GC). The results revealed that the monomeric composition of the obtained polyesters depended on the available substrate. When glucose was used in the growth phase, 3-hydroxyundecanoate and 3-hydroxydodecanoate were found in the polymer composition, whereas in the PHAs-accumulating stage, the Pseudomonas Gl01 strain synthesized mcl-PHAs consisting mainly of 3-hydroxyoctanoate and 3-hydroxydecanoate. The transcriptional analysis using reverse-transcription real-time PCR reaction revealed that the phaC1 gene could be transcribed simultaneously to the phaZ gene.

Scarless Genomic Point Mutation to Construct a Bacillus subtilis Strain Displaying Increased Antibiotic Plipastatin Production

  • Jeong, Da-Eun;So, Younju;Lim, Hayeon;Park, Seung-Hwan;Choi, Soo-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.1030-1036
    • /
    • 2018
  • Bacillus strains produce various types of antibiotics, and random mutagenesis has traditionally been used to overproduce these natural metabolites. However, this method leads to the accumulation of unwanted mutations in the genome. Here, we rationally designed a single nucleotide substitution in the degU gene to generate a B. subtilis strain displaying increased plipastatin production in a foreign DNA-free manner. The mutant strain (BS1028u) showed improved antifungal activity against Pythium ultimum. Notably, pps operon deletion in BS1028u resulted in complete loss of antifungal activity, suggesting that the antifungal activity strongly depends on the expression of the pps operon. Quantitative real-time PCR and lacZ assays showed that the point mutation resulted in 2-fold increased pps operon expression, which caused the increase in antifungal activity. Likewise, commercial Bacillus strains can be improved to display higher antifungal activity by rationally designed simple modifications of their genome, rendering them more efficient biocontrol agents.

Ciprofloxacin Resistance by Altered Gyrase and Drug Efflux System in Pseudomonas aeruginosa

  • Cho, Myung-Sun;Kim, Do-Yeob;Kong, Jae-Yang;Yang, Sung-Il
    • Archives of Pharmacal Research
    • /
    • v.18 no.3
    • /
    • pp.173-178
    • /
    • 1995
  • Ciprofloxacin resistance mechanisms were studied by investigating the inhibitory effect of ciprofloxacin on the gyrase-mediated DNA supercoiling and the intracellular accumulation of ciprofloxacin in clinical isolates of Pseudomonas aeruginosa. A higher amount of ciprofloxacin was required to inhibit the gyrases purified from the ciprofloxacin-resistant strains than that from the sensitive strain. Reconstitution of heterologous gyrase subunits from different strains revealed alterations in the A and/or the B subunits of gyrase in these strains. In addition, the resistant strains accumulated approximately a half amount of ciprofloxacin inside the cells, compared to the sensitive strain. However, when the active efflux was blocked by carbonyl cyanide m-chlorophenyl hydrazone treatment, intracellular concentration of ciprofloxacin was elevated about 4-7 fold in these strains, while the sensitive strain was not significantly affected by this treatment, indicating that the ciprofloxacin-resistant strains developed a drug efflux system. Interestingly, these resistant strains expressed an envelope protein of approximately 51 kD. These studies suggest that alterations in the gyrase as well as the active drug-efflux system conferred dual ciprofloxacin resistance mechanisms to these clinical isolates of P. aeruginosa.

  • PDF

Studies on the Production of L-Glutamic Acid by Brevibacterium ammoniagenes (Brevibacterium ammoniagenes에 의한 글루탐산 제조에 관한 연구)

  • Yoo, Young-Jin;Kim, Taik-Yung
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1977
  • A bacterium strain (K-173-10) which was isolated from waste soil of Korea brewing factory, could be grown on acetate as the sole carbon source and accumulated a considerable amount of L-glutamic acid in the medium. This strain was identified as the new species Brevibacterium ammoniagenes. This study was concerned not only with the culture condition for the production of L-glutamic acid and the cell growth, but also with the effects on concentration of various kind of organic substances, growth factors and penicillin. The results obtained were summarized as follow; 1. It was found that the concentrations of acetate and ammonium ions affected the growth of the bacterium as well as its L-glutamate accumulation. The optimum conditions of the composition of grown media for the growth of the bacterium and its glutamic acid production was found to be 40 g/l of total acetate, $100\;{\mu}g/l$ thiamine, $0.5\;{\mu}g/l$ biotin and $1{\sim}2g/l$ corn steep liquor as the growth factors. 2. Organic acid such as succinic acid, malic acid and ${\alpha}-ketoglutaric$ acid inhibited the cell growth as well as its L-glutamic acid production. 3. The penicillin (20 units/ml) stimulated the production of glutamic acid at appropriate incubation period. 4. It was found that this strain could grow in the presence of urea and ammonium acetate but not in other nitrogen sources.

  • PDF

Fungichromin Production by Streptomyces padanus PMS-702 for Controlling Cucumber Downy Mildew

  • Fan, Ya-Ting;Chung, Kuang-Ren;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.341-350
    • /
    • 2019
  • Streptomyces padanus PMS-702 strain produces a polyene macrolide antibiotic fungichromin and displays antagonistic activities against many phytopathogenic fungi. In the present study, experimental formulations were assessed to improve the production of fungichromin, the efficacy of PMS-702 on the suppression of sporangial germination, and the reduction of cucumber downy mildew caused by Pseudoperonospora cubensis. PMS-702 strain cultured in a soybean meal-glucose (SMG) medium led to low levels of fungichromin accumulation and sporangial germination suppression. Increasing medium compositions and adding plant oils (noticeably coconut oil) in SMG significantly increased fungichromin production from 68 to $1,999.6{\mu}g/ml$. Microscopic examination reveals that the resultant suspensions significantly reduced sporangial germination and caused cytoplasmic aggregation. Greenhouse trials reveal that the application of PMS-702 cultural suspensions reduced downy mildew severity considerably. The addition of Tween 80 into the synthetic medium while culturing PMS-702 further increased the suppressive efficacy of downy mildew severity, particularly when applied at 24 h before inoculation or co-applied with inoculum. Fungichromin at $50{\mu}g/ml$ induced phytotoxicity showing minor necrosis surrounded with light yellowish halos on cucumber leaves. The concentration that leads to 90% inhibition (IC90) of sporangial germination was estimated to be around $10{\mu}g/ml$. The results provide a strong possibility of using the S. padanus PMS-702 strain as a biocontrol agent to control other plant pathogens.

Solubilization of Hardly Soluble Phosphates and Growth Promotion of Maize (Zea mays L.) by Penicillium oxalicum Isolated from Rhizosphere

  • SHIN WANSIK;RYU JEOUNGHYUN;CHOI SEUNGJU;KIM CHUNGWOO;GADAGI RAVI;MADHAIYAN MUNUSAMY;SESHADRI SUNDARAM;CHUNG JONGBAE;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1273-1279
    • /
    • 2005
  • Penicillium oxalicum strain CBPS-3F-Tsa, an efficient phosphate solubilizing fungus, was evaluated for its production of organic acid in vitro and effect of inoculation on the growth promotion of Maize under greenhouse conditions. The fungus solubilized 129.1, 118.8, and 54.1 mg P/1 of tricalcium phosphate [$Ca_{3}(PO_{4})_{2}$], aluminum phosphate ($A1PO_{4}$),and ferric phosphate ($FePO_{4}$), respectively, after 72 h of incubation. Malic acid, gluconic acid, and oxalic acid were detected in the flasks supplemented with various phosphate sources [240, 146, 145 mM/1 $A1PO_{4},\;FePO_{4},\;and\;Ca_{3}(PO_{4})_{2}$, respectively] together with a large amount of malic acid followed by the other two. The effects of inoculation of P. oxalicum CBPS-3F-Tsa on maize plants were studied under pot culture conditions. P. oxalicum CBPS-3F-Tsa was inoculated to maize plants alone or together with inorganic phosphates in the form of fused phosphates (FP) and rock phosphates (RP). Inoculation of P. oxalicum CBPS-3F-Tsa increased the plant growth and N and P accumulation in plants, compared with control plants, and also had positive effects when applied with RP. The results of this study show that the fungus P. oxalicum strain CBPS-3F-Tsa could solubilize different insoluble phosphates by producing organic acids, particularly malic acid, and also improved the efficiency of RP applied to maize plants.

Different Catabolism Pathways Triggered by Various Methylxanthines in Caffeine-Tolerant Bacterium Pseudomonas putida CT25 Isolated from Tea Garden Soil

  • Ma, Yi-Xiao;Wu, Xiao-Han;Wu, Hui-Shi;Dong, Zhan-Bo;Ye, Jian-Hui;Zheng, Xin-Qiang;Liang, Yue-Rong;Lu, Jian-Liang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1147-1155
    • /
    • 2018
  • The degradation efficiency and catabolism pathways of the different methylxanthines (MXs) in isolated caffeine-tolerant strain Pseudomonas putida CT25 were comprehensively studied. The results showed that the degradation efficiency of various MXs varied with the number and position of the methyl groups on the molecule (i.e., xanthine > 7-methylxanthine ${\approx}$ theobromine > caffeine > theophylline > 1-methylxanthine). Multiple MX catabolism pathways coexisted in strain CT25, and a different pathway would be triggered by various MXs. Demethylation dominated in the degradation of N-7-methylated MXs (such as 7-methylxanthine, theobromine, and caffeine), where C-8 oxidation was the major pathway in the catabolism of 1-methylxanthine, whereas demethylation and C-8 oxidation are likely both involved in the degradation of theophylline. Enzymes responsible for MX degradation were located inside the cell. Both cell culture and cell-free enzyme assays revealed that N-1 demethylation might be a rate-limiting step for the catabolism of the MXs. Surprisingly, accumulation of uric acid was observed in a cell-free reaction system, which might be attributed to the lack of activity of uricase, a cytochrome c-coupled membrane integral enzyme.

Bacterial Stringent Signal Directs Virulence and Survival in Vibrio cholerae.

  • Oh, Young Taek;Kim, Hwa Young;Yoon, Sang Sun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.8-8
    • /
    • 2019
  • The stringent response (SR) is characterized as a bacterial defense mechanism in response to various growth-inhibiting stresses. It is activated by accumulation of a small nucleotide regulator, (p)ppGpp, and induces global changes in bacterial transcription and translation. Recent work from our group has shown that (p)ppGpp plays a critical role in virulence and survival in Vibrio cholerae. The genes, relA and relV, are involved in the production of (p)ppGpp, while the spoT gene encodes an enzyme that hydrolyzes it in V. cholerae. A mutant strain defective in (p)ppGpp production (i.e. ${\Delta}relA{\Delta}relV{\Delta}spoT$ mutant) lost the ability to produce cholera toxin (CT) and lost their viability due to uncontrolled production of organic acids, when grown with extra glucose. In contrast, the ${\Delta}relA{\Delta}spoT$ mutant, a (p)ppGpp overproducer strain, produced enhanced level of CT and exhibited better growth in glucose supplemented media via glucose metabolic switch from organic fermentation to acetoin, a neutral fermentation end product, fermentation. These findings indicates that (p)ppGpp, in addition to its well-known role as a SR mediator, positively regulates CT production and maintenance of growth fitness in V. cholerae. This implicates SR as a promising drug target, inhibition of which may possibly downregulate V. cholerae virulence and survival fitness. Therefore, we screened a chemical library and identified a compound that induces medium acidification (termed iMAC) and thereby loss of wild type V. cholerae viability under glucose-rich conditions. Further, we present a potential mechanism by which the compound inhibits (p)ppGpp accumulation. Together, these results indicate that iMAC treatment causes V. cholerae cells to produce significantly less (p)ppGpp, an important regulator of the bacterial virulence and survival response, and further suggesting that it has a therapeutic potential to be developed as a novel antibacterial agent against cholera.

  • PDF

Interpretation and Generalization by Neuroscience and Material Mechanics on Deviation in Temporomandibular Joint Balancing Medicine (턱관절균형의학에서 편차발생현상의 신경과학 및 재료역학적 해석과 일반화)

  • Gyoo-yong Chi
    • Journal of TMJ Balancing Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Objectives: For the deviation phenomenon occurring during the treatment process in temporo-mandibular balancing medicine (TBM), hypotheses were established regarding the cause and mechanism of formation from the perspective of neuro-science and material mechanics, and a verification method was proposed. Methods: The deviation phenomenon was theoretically analyzed based on the structure theories of material mechanics of the joint and the neurological pain mechanism. Results: Deviation occurs due to temporary yield by the accumulation of heterogeneous stress in the temporo-mandibular joint and the affected joint. Because the joint structures are corresponding with material mechanics showing compressive and tensile properties. The size of the deviation is expressed in terms of strain. The occlusal surface of the teeth is level with the axial joint. Since the magnitude of the deviation has a proportional relationship with the degree of abnormality of the temporo-mandibular joint, the magnitude of the deviation calculated by the balance measurement can be replaced by the strain. The major variables involved in the occurrence of deviations are the strength of joint structures and neurological conditions. Therefore plastic deformation and adaptation occur as a long-term depression of neural circuits is strengthened in different ways at different locations each time in various clinical situations. This is the reason why the sequence of the restoration process while correcting deviations is following reverse order of the accumulation in many layers in the muscular nervous system. Conclusions: From the above results, it can be inferred that the occurrence and correction of the deviations are corresponding with the plastic deformation and neuro-plasticity.

Accumulation of triple recessive alleles for three antinutritional proteins in soybean with black seed coat and green cotyledon

  • Kang, Gyung Young;Choi, Sang Woo;Chae, Won Gi;Chung, Jong Il
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.118-123
    • /
    • 2020
  • The black seed coat of soybeans contain anthocyanins which promote health. However, mature soybean seeds contain anti-nutritional factors like lipoxygenase, lectin and Kunitz Trypsin Inhibitor (KTI) proteins. Furthermore, these seeds can be used only after the genetic elimination of these proteins. Therefore, the objective of this study was to develop novel soybean genotypes with black seed coat and triple recessive alleles (lx1lx1lx2lx2lx3lx3, titilele) for lipoxygenase, lectin, and KTI proteins. From a cross of parent1 (lx1lx2lx3/lx1lx2lx3, ti/ti, Le/Le) and parent2 (lx1lx2lx3/lx1lx2lx3, Ti/Ti, le/le), 132 F2 seeds were obtained. A 3:1 segregation ratio was observed during F2 seed generation for the inheritance of lectin and KTI proteins. Between a cross of the Le and Ti genes, the observed independent inheritance ratio in the F2 seed generation was 9: 3 : 3 : 1 (69 Le_Ti_: 32 leleTi_: 22 Le_titi: 9 leletiti) (χ2=2.87, P=0.5 - 0.1). From nine F2 seeds with triple recessive alleles (lx1lx1lx2lx2lx3lx3, titilele genotype), one novel strain posessing black seed coat, and free of lipoxygenase, lectin and KTI proteins, was selected. The seed coat color of the new strain was black and the cotyledon color of the mature seed was green. The weight of 100 seeds belonging to the new strain was 35.4 g. This black soybean strain with lx1lx1lx2lx2lx3lx3, titilele genotype is a novel strain free of lipoxygenase, lectin, and KTI proteins.