References
- Aftab MN, Haq I-U, Baig S. 2012. Systematic mutagenesis method for enhanced production of bacitracin by Bacillus licheniformis mutant strain UV-MN-HN-6. Braz. J. Microbiol. 43: 78-88. https://doi.org/10.1590/S1517-83822012000100009
- Leonard CA, Brown SD, Hayman JR. 2013. Random mutagenesis of the Aspergillus oryzae genome results in fungal antibacterial activity. Int. J. Microbiol. 2013: 901697.
- Medema MH, Alam MT, Breitling R, Takano E. 2011. The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng. Bugs 2: 230-233. https://doi.org/10.4161/bbug.2.4.16114
- Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M. 1999. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 43: 2183-2192.
- Inaoka T, Wang G, Ochi K. 2009. ScoC regulates bacilysin production at the transcription level in Bacillus subtilis. J. Bacteriol. 191: 7367-7371. https://doi.org/10.1128/JB.01081-09
- Vargas-Bautista C, Rahlwes K, Straight P. 2014. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis. J. Bacteriol. 196: 717-728. https://doi.org/10.1128/JB.01022-13
- Hamoen LW, Van Werkhoven AF, Venema G, Dubnau D. 2000. The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 97: 9246-9251. https://doi.org/10.1073/pnas.160010597
- Mader U, Antelmann H, Buder T, Dahl MK, Hecker M, Homuth G. 2002. Bacillus subtilis functional genomics: genomewide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol. Genet. Genomics 268: 455-467. https://doi.org/10.1007/s00438-002-0774-2
- Koumoutsi A, Chen XH, Vater J, Borriss R. 2007. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl. Environ. Microbiol. 73: 6953-6964. https://doi.org/10.1128/AEM.00565-07
- Msadek T, Kunst F, Henner D, Klier A, Rapoport G, Dedonder R. 1990. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172: 824-834. https://doi.org/10.1128/jb.172.2.824-834.1990
- Dahl MK, Msadek T, Kunst F, Rapoport G. 1992. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J. Biol. Chem. 267: 14509-14514.
- Jeong DE, Park SH, Pan JG, Kim EJ, Choi SK. 2015. Genome engineering using a synthetic gene circuit in Bacillus subtilis. Nucleic Acids Res. 43: e42. https://doi.org/10.1093/nar/gku1380
- Hill JE, Myers AM, Koerner TJ, Tzagoloff A. 1986. Yeast/ E. coli shuttle vectors with multiple unique restriction sites. Yeast 2: 163-167. https://doi.org/10.1002/yea.320020304
- Bae JH, Sung BH, Kim HJ, Park SH, Lim KM, Kim MJ, et al. 2015. An efficient genome-wide fusion partner screening system for secretion of recombinant proteins in yeast. Sci. Rep. 5: 12229. https://doi.org/10.1038/srep12229
- Lee SJ, Pan JG, Park SH, Choi SK. 2010. Development of a stationary phase-specific autoinducible expression system in Bacillus subtilis. J. Biotechnol. 149: 16-20. https://doi.org/10.1016/j.jbiotec.2010.06.021
- So Y, Park S-Y, Park E-H, Park S-H, Kim E-J, Pan J-G, et al. 2017. A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis. Front. Microbiol. 8: 1167. https://doi.org/10.3389/fmicb.2017.01167
- Kim JH, Chang PK, Chan KL, Faria NC, Mahoney N, Kim YK, et al. 2012. Enhancement of commercial antifungal agents by kojic acid. Int. J. Mol. Sci. 13: 13867-13880. https://doi.org/10.3390/ijms131113867
- el-Bendary MA. 2006. Bacillus thuringiensis and Bacillus sphaericus biopesticides production. J. Basic Microbiol. 46: 158-170. https://doi.org/10.1002/jobm.200510585
- Chen X, Zhang Y, Fu X, Li Y, Wang Q. 2016. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biol. Technol. 115: 113-121. https://doi.org/10.1016/j.postharvbio.2015.12.021
- Gao L, Liu H, Ma Z, Han J, Lu Z, Dai C, et al. 2016. Translocation of the thioesterase domain for the redesign of plipastatin synthetase. Sci. Rep. 6: 38467. https://doi.org/10.1038/srep38467
- Saida F , Uzan M, Odaert B , Bontems F. 2006. Expression of highly toxic genes in E. coli: special strategies and genetic tools. Curr. Protein Pept. Sci. 7: 47-56. https://doi.org/10.2174/138920306775474095
- Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, et al. 2008. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc. Natl. Acad. Sci. USA 105: 20404-20409. https://doi.org/10.1073/pnas.0811011106
- Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Murray EJ, Kiley TB, Stanley-Wall NR. 2009. A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology 155: 1-8. https://doi.org/10.1099/mic.0.023903-0
Cited by
- Mining New Plipastatins and Increasing the Total Yield Using CRISPR/Cas9 in Genome-Modified Bacillus subtilis 1A751 vol.68, pp.41, 2018, https://doi.org/10.1021/acs.jafc.0c03694
- Simultaneous Production of Multiple Antimicrobial Compounds by Bacillus velezensis ML122-2 Isolated From Assam Tea Leaf [Camellia sinensis var. assamica (J.W.Mast.) Kitam.] vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.789362