The first purpose of this study was to evaluate the scavenging capacity (SC) of DPPH and ABTS free radicals for ethanol extract (STR-E) and its active fractions from Sophora tonkinensis root (STR). Four different fractions from STR-E were prepared by using different types of solvents such as chloroform (STR-E-C), ethyl acetate (STR-E-EA), n-butanol (STR-E-B), and water (STR-E-W). STR-E-C showed the highest value of total phenolic content, while STR-E showed the highest value of total flavonoid and terpenoid content. In STR-E and its four fractions, STR-E-EA showed the strongest SC with the lowest SC50 values of the DPPH radicals and ABTS radicals. The second purpose of this study was to evaluate anti-inflammatory activity in the lipopolysaccharide (LPS)-induced RAW 264.7 macrophages treated with STR-E, STR-E-C, and STR-E-EA, respectively. No cytotoxic effect to RAW 264.7 cells was observed at 20 ~ 25 ㎍/ml of STR-E, 10 ㎍/ml of STR-E-C, and 5 ㎍/ml of the STR-E-EA, presenting cell viability values close to that of the untreated control (100%). STR-E, STR-E-C, and STR-E-EA significantly suppressed the LPS-induced nitric oxide (NO) in a dose-dependent manner. Results of reverse-transcription (RT)-qPCR analysis showed that the peak mRNA levels of IL-1β, TNF-α, iNOS, IL-6, and IL-10 were observed in the LPS-stimulated macrophages at 4 h, 2 h, 12 h, 12 h, and 12 h, respectively. The peak mRNA levels of IL-1β, TNF-α, iNOS, and IL-6 were significantly reduced in the LPS-stimulated macrophages co-treated with 20 ㎍/ml and 25 ㎍/ml of STR-E, respectively. In the case of IL-10, its peak mRNA level slightly increased without statistical significance. Compared with the LPS-stimulated macrophages, the peak mRNA levels of IL-1β, TNF-α, iNOS, and IL-6 reduced in the LPS-stimulated macrophages co-treated with 10 ㎍/ml and 20 ㎍/ml of STR-E-C, respectively. In contrast, the peak mRNA level of IL-10 significantly increased at 8 h. Compared with the LPS-stimulated macrophages, the peak mRNA levels of IL-1β, TNF-α, iNOS, and IL-6 reduced in the LPS-stimulated macrophages co-treated with 5 ㎍/ml and 10 ㎍/ml of STR-E-EA, respectively. In contrast, the peak mRNA level of IL-10 increased at 4 h. Taken together, our data indicated that STR-E, STR-E-C, and STR-E-EA activate macrophages to secrete both pro-inflammatory and anti-inflammatory cytokines.