• Title/Summary/Keyword: story drift ratio

Search Result 164, Processing Time 0.025 seconds

Seismic Evaluation of RC Special Shear Wall with Improved Reinforcement Details in Boundary Elements (경계요소의 횡보강근 상세를 개선한 RC 특수전단벽의 내진성능 평가)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.3 no.2
    • /
    • pp.195-202
    • /
    • 2012
  • This paper summarizes the seismic performance of two shear walls with different reinforcement details in boundary elements. One is a special shear wall designed by KBC2009 and the other is a shear wall with improved reinforcement details in boundary elements, which is a newly proposed type of special shear wall. Experimental tests under cyclic reversed loading were carried out with two 2/3 scale shear walls which were modelled from the lower part of seismic-resisting shear wall in 22-stories wall-slab apartment building. The experimental results show that seismic performance of shear wall with improved reinforcement details was almost similar to that of special shear wall with respect to the moment-drift ratio. However, energy dissipation capacity and ductility were slightly different. Also, shear wall with improved reinforcement details in boundary elements satisfied the inter-story drift limit of 1.5% from KBC2009.

Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network

  • Mohamed Noureldin;Masoum M. Gharagoz;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.167-184
    • /
    • 2023
  • In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.

Behavior of Three Story Bearing Wall Structure under Lateral toad Reversals (반복 수평하중을 받는 3층 철근콘크리트 내력벽 아파트 구조물의 거동 특성)

  • Chang Kuk-Kwan;Oh Young-Hun;Kim Ki-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.627-634
    • /
    • 2004
  • The purpose of this study is to investigate seismic performance of a bearing wall system for apartment buildings. An 1/3 scale three-story specimen was constructed and tested under cyclic lateral loads. The specimen was consisted of pierced walls and coupling elements as well as floor slabs. The bearing wall system is considered to have a adequate deformation capacity up to $2.0\%$ of roof drift ratio, and the experimental results showed the ductile load-deformation characteristics even though some walls were failed in shear Nonlinear analysis was peformed to compare the load-deformation curve obtained from the experimental program. The result of nonlinear analysis could be useful to predict the actual behavior characteristics of the bearing wall system subjected to lateral loads.

Impact of initial damage path and spectral shape on aftershock collapse fragility of RC frames

  • Liu, Yang;Yu, Xiao-Hui;Lu, Da-Gang;Ma, Fu-Zi
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.529-540
    • /
    • 2018
  • The influences of initial damage paths and aftershock (AS) spectral shape on the assessment of AS collapse fragility are investigated. To do this, a four-story ductile reinforced concrete (RC) frame structure is employed as the study case. The far-field earthquake records recommended by FEMA P695 are used as AS ground motions. The AS incremental dynamic analyses are performed for the damaged structure. To examine the effect of initial damage paths, a total of six kinds of initial damage paths are adopted to simulate different initial damage states of the structure by pushover analysis and dynamic analysis. For the pushover-based initial damage paths, the structure is "pushed" using either uniform or triangle lateral load pattern to a specified damage state quantified by the maximum inter-story drift ratio. Among the dynamic initial damage paths, one single mainshock ground motion or a suite of mainshock ground motions are used in the incremental dynamic analyses to generate a specified initial damage state to the structure. The results show that the structure collapse capacity is reduced as the increase of initial damage, and the initial damage paths show a significant effect on the calculated collapse capacities of the damaged structure (especially at severe damage states). To account for the effect of AS spectral shape, the AS collapse fragility can be adjusted at different target values of ${\varepsilon}$ by using the linear correlation model between the collapse capacity (in term of spectral intensity) and the AS ${\varepsilon}$ values, and coefficients of this linear model is found to be associated with the initial damage states.

Seismic Analysis of Mid Rise Steel Moment Resisting Frames with Relative Stiffness of Connections and Beams (접합부와 보의 상대강성을 고려한 중층 철골 모멘트 골조의 내진해석)

  • Ha, Sung-Hwan;Kang, Cheol-Kyu;Han, Hong-Soo;Han, Kweon-Gyu;Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.595-606
    • /
    • 2011
  • This study was conducted to investigate the seismic behavior of steel member resisting frames considering the relative stiffness of the connection and beams. Six-story steel moment frames were designed to study the seismic behavior. The connections were classified into Double Web-Angle connections (DWAs), Top- and Seat-angles with double Web-angles (TWSs), FEMA-Test Summary No. 28, Specimen ID: UCSD-6 (SAC), and Fully Restrained (FR). The rotational stiffness of the semi-rigid connections was estimated using the Three-Parameter Power Model adopted by Chen and Kishi. The relative stiffness, which is the ratio of the rotational stiffness of the connections to the stiffness of the beams, was used. Push-over, repeated loading, and time history analysis were performed for all the frames. The seismic behavior of each frame was analyzed with the story drift, plastic hinge rotation, and hysteretic energy distribution.

Estimation of Beam Plastic Rotation Demands for Special Moment-Resisting Steel Frames (강구조 특수모멘트골조의 보 소성변형요구량 평가)

  • Eom, Tae-Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.405-415
    • /
    • 2011
  • For the safe seismic design of buildings, it is necessary to predict the plastic deformation demands of the members as well as the story drift ratio. In the present study, a simple method of estimating the beam plastic rotation was developed for special-moment-resisting steel frame structures designed with strong column-weak beam behavior. The proposed method uses elastic analysis rather than nonlinear analysis, which is difficult to use in practice. The beam plastic rotation was directly calculated based on the results of the elastic analysis, addressing the moment redistribution, the column and joint dimensions, the movement of the plastic hinge, the panel zone deformation, the gravity load, and the strain-hardening behavior. In addition, the rocking effect of the braced frame or core wall on the beam plastic rotation was addressed. For verification, the proposed method was applied to a six-story special-moment frame designed with strong column-weak beam behavior. The predicted plastic rotations of the beams were compared with those that were determined via nonlinear analysis. The beam plastic rotations that were predicted using the proposed method correlated well with those that were determined from the nonlinear pushover analysis.

Analyses of Structural Behaviors According to Core Location in the Building with Symmetric Plan (대칭 평면형 건물에서의 코어위치에 따른 구조거동 분석)

  • Kim, Jung-Rae;Kim, Jae-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.116-124
    • /
    • 2020
  • In order to analyze the lateral-load resisting capability according to the core locations, three-dimensional structural analyses were performed for 20-story buildings with symmetric plan. Four analytical models for a center core, a single-axial eccentric core, and a double-axial eccentric core were constructed, and eigenvalue analyses, wind-load analyses, and earthquake-load analyses were performed. Torsion did not occur in the central core building, but the bending and torsion occurred in combination with the arrangement of the eccentric core, and the lateral-load resisting capability was degraded. The change in the wind load according to the eccentric core was small, but the maximum lateral displacement was found to increase greatly by the eccentric arrangement of the core. In addition, in case of the eccentric core, the seismic load was slightly reduced compared to the center core due to the decrease in the lateral stiffness, but it was found that the maximum story drift ratio increased significantly due to the torsional effect. Based on these results, the structural behavior according to the position of the core can be clearified and used as a guideline for core locations in the planning and design stage.

New optimum distribution of lateral strength of shear-type buildings for uniform damage

  • Donaire-Avila, Jesus;Lucchini, Andrea;Benavent-Climent, Amadeo;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.279-291
    • /
    • 2020
  • The seismic design of conventional frame structures is meant to enhance plastic deformations at beam ends and prevent yielding in columns. To this end, columns are made stronger than beams. Yet yielding in columns cannot be avoided with the column-to-beam strength ratios (about 1.3) prescribed by seismic codes. Preventing plastic deformations in columns calls for ratios close to 4, which is not feasible for economic reasons. Furthermore, material properties and the rearrangement of geometric shapes inevitably make the distribution of damage among stories uneven. Damage in the i-th story can be characterized as the accumulated plastic strain energy (Wpi) normalized by the product of the story shear force (Qyi) and drift (δyi) at yielding. Past studies showed that the distribution of the plastic strain energy dissipation demand, Wpi/ΣWpj, can be evaluated from the deviation of Qyi with respect to an "optimum value" that would make the ratio Wpi/(Qyiδyi) -i.e. the damage- equal in all stories. This paper investigates how the soil type and ductility demand affect the optimum lateral strength distribution. New optimum lateral strength distributions are put forth and compared with others proposed in the literature.

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.

Evaluation of Emulative Level for Precast Moment Frame Systems with Dry Mechanical Splices by Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 건식 기계적이음을 갖는 프리캐스트 모멘트 골조의 동등성 평가)

  • Kim, Seon-Hoon;Lee, Won Jun;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.85-92
    • /
    • 2024
  • This study presents code-compliant seismic details by addressing dry mechanical splices for precast concrete (PC) beam-column connections in the ACI 318-19 code. To this end, critical observations of previous test results on precast beam-column connection specimens with the proposed seismic detail are briefly reported in this study, along with a typical reinforced concrete (RC) monolithic connection. On this basis, nonlinear dynamic models were developed to verify seismic responses of the PC emulative moment-resisting frame systems. As the current design code allows only the emulative design approach, this study aims at identifying the seismic performances of PC moment frame systems depending on their emulative levels, for which two extreme cases were intentionally chosen as the non-emulative (unbonded self-centering with marginal energy dissipation) and fully-emulative connection details. Their corresponding hysteresis models were set by using commercial finite element analysis software. According to the current seismic design provisions, a typical five-story building was designed as a target PC building. Subsequently, nonlinear dynamic time history analyses were performed with seven ground motions to investigate the impact of emulation level or hysteresis models (i.e., energy dissipation performance) on system responses between the emulative and non-emulative PC moment frames. The analytical results showed that both the base shear and story drift ratio were substantially reduced in the emulative system compared to that of the non-emulative one, and it indicates the importance of the code-compliant (i.e., emulative) connection details on the seismic performance of the precast building.