• Title/Summary/Keyword: story construction

Search Result 480, Processing Time 0.021 seconds

Holder exponent analysis for discontinuity detection

  • Sohn, Hoon;Robertson, Amy N.;Farrar, Charles R.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.409-428
    • /
    • 2004
  • In this paper, a Holder exponent, a measure of the degree to which a signal is differentiable, is presented to detect the presence of a discontinuity and when the discontinuity occurs in a dynamic signal. This discontinuity detection has potential applications to structural health monitoring because discontinuities are often introduced into dynamic response data as a result of certain types of damage. Wavelet transforms are incorporated with the Holder exponent to capture the time varying nature of discontinuities, and a classification procedure is developed to quantify when changes in the Holder exponent are significant. The proposed Holder exponent analysis is applied to various experimental signals to reveal underlying damage causing events from the signals. Signals being analyzed include acceleration response of a mechanical system with a rattling internal part, acceleration signals of a three-story building model with a loosing bolt, and strain records of an in-situ bridge during construction. The experimental results presented in this paper demonstrate that the Holder exponent can be an effective tool for identifying certain types of events that introduce discontinuities into the measured dynamic response data.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Passive, semi-active, and active tuned-liquid-column dampers

  • Chen, Yung-Hsiang;Ding, Ying-Jan
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.1-20
    • /
    • 2008
  • The dynamic characteristics of the passive, semi-active, and active tuned-liquidcolumn dampers (or TLCDs) are studied in this paper. The design of the latter two are based on the first one. A water-head difference (or simply named as water head in this paper) of a passive TLCD is pre-set to form the so-called semi-active one in this paper. The pre-set of water head is released at a proper time instant during an earthquake excitation in order to enhance the vibration reduction of a structure. Two propellers are installed along a shaft inside and at the center of a passive TLCD to form an active one. These two propellers are driven by a servo-motor controlled by a computer to provide the control force. The seismic responses of a five-story shear building with a passive, semiactive, and active TLCDs are computed for demonstration and discussion. The responses of this building with a tuned mass damper (or TMD) are also included for comparison. The small-scale shaking-table experiments of a pendulum-like system with a passive or active TLCD to harmonic and seismic excitations are conducted for verification.

Analysis of Seismic Performance of Slim Flat Plate System in High-rise Hybrid Structural System (슬림형 바닥시스템을 이용한 고층 복합구조의 내진성능에 관한 해석적 연구)

  • Ha Gee Joo;Park Hyo Sun;Park Joung Hyen;Choi Kyung Ryeol;Kim Dae Joung;Jung Jea Kwang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.77-80
    • /
    • 2005
  • Recently the construction of high-rise hybrid type building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new hybrid structural system, using slim flat plate system, is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is ,with the economy and flexibility, flat plate system in high-rise hybrid type building. But it was focused in the seismic performance for high performance flat plate system in high-rise hybrid type building. Therefore, in the study, to develop the new flat-plate system with high ductile, durable, good performance for the applications. It was evaluated the seismic performance in the critical region of slab-column connection. And then high performance flat plate system, designed by the economy and safety, was developed as a new technique in the application of high-rise hybrid type building.

  • PDF

Economic Growth by Arts Activities Case Study on Nagahama Story in Shiga Pregecture, Japan (문화할동을 통한 지역활성화: 일본 시가현(滋賀縣) 나가하마(長浜市) 이야기)

  • Shin, Dong-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.431-440
    • /
    • 2006
  • In many countries of the world, cultural activities are introduced as a popular means of promoting local economies and identities. In many places of Japan, a traditional cultural activity, "Machtskuri" (meaning "Vilige Making," literally) has been practiced in the past several decades. A small town, Nagahama of Shiga Prefecture, with 50,000 people, started restoring an old castle and historical build, art exibition, traditional fashion festivals, etc. Based on the successful experience from the cultural activities, community leaders of Nagahama made success in creating other projects, such as construction of a baseball stadium, a hotel and a community college. It can be concluded that Nagahama has been successful in creating making the place famious and the people confident.

  • PDF

Monotonic Loading Tests of RC Beam-Column Subassemblage Strengthened to Prevent Progressive Collapse

  • Kim, Jinkoo;Choi, Hyunhoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.401-413
    • /
    • 2015
  • In this study the progressive collapse resisting capacity of a RC beam-column subassemblage with and without strengthening was investigated. Total of five specimens were tested; two unreinforced specimens, the one designed as gravity load-resisting system and the other as seismic load-resisting system, and three specimens reinforced with: (i) bonded strand, (ii) unbonded strand, and (iii) side steel plates with stud bolts. The two-span subassemblages were designed as part of an eight-story RC building. Monotonically increasing load was applied at the middle column of the specimens and the force-displacement relationships were plotted. It was observed that the gravity load-resisting specimen failed by fractures of re-bars in the beams. In the other specimens no failure was observed until the maximum displacement capacity of the actuator was reached. Highest strength was observed in the structure with unbonded strand. The test result of the specimen with side steel plates in beam-column joints showed that the force-displacement curve increased without fracture of re-bars. Based on the test results it was concluded that the progressive collapse resisting capacity of a RC frame could be significantly enhanced using unbonded strands or side plates with stud bolts.

Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings

  • Gholipour, Mohammadreza;Mazloom, Moosa
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.17-34
    • /
    • 2018
  • Tall buildings are categorized as important structures because of the large number of occupants and high construction costs. The choice of competent lateral load resisting systems in tall buildings is of crucial importance. Bracing systems have long been an economic and effective method for resisting lateral loads in steel structures. However, there are some potential adverse aspects to bracing systems such as the limitations they inflict on architectural plans, uplift forces and poor performances in compression. in order to eliminate the mentioned problems and for cost optimization, in this paper, six 20-story steel buildings and frames with different types of bracing, i.e., conventional, mega-scale and buckling-restrained bracing (BRB) were analyzed. Linear and modal push-over analyses were carried out. The results pointed out that Mega-Scale Bracing (MSB) system has significant superiority over the conventional bracing type. The MSB system is 25% more economic. Some other advantages of MSB include: up to 63% less drift ratio, up to 38% better performance in lateral displacement, up to 100% stiffer stories, and about 50% smaller uplift forces. Moreover, MSB equipped with BRB attests even a better seismic behavior in the aforementioned parameters.

Post-earthquake building safety evaluation using consumer-grade surveillance cameras

  • Hsu, Ting Y.;Pham, Quang V.;Chao, Wei C.;Yang, Yuan S.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2020
  • This paper demonstrates the possibility of evaluating the safety of a building right after an earthquake using consumer-grade surveillance cameras installed in the building. Two cameras are used in each story to extract the time history of interstory drift during the earthquake based on camera calibration, stereo triangulation, and image template matching techniques. The interstory drift of several markers on the rigid floor are used to estimate the motion of the geometric center using the least square approach, then the horizontal interstory drift of any location on the floor can be estimated. A shaking table collapse test of a steel building was conducted to verify the proposed approach. The results indicate that the accuracy of the interstory drift measured by the cameras is high enough to estimate the damage state of the building based on the fragility curve of the interstory drift ratio. On the other hand, the interstory drift measured by an accelerometer tends to underestimate the damage state when residual interstory drift occurs because the low frequency content of the displacement signal is eliminated when high-pass filtering is employed for baseline correction.

A Study on Reinforced Concrete Beams with Perforation (철근콘크리트 유공보에 관한 연구)

  • Park, Kyong-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.7-14
    • /
    • 2001
  • In building structure, the story height can be minimized by providing openings in beams which serves for the utility equipments passing through. The dead space in false ceiling thus put to economical use in the form of a substantial reduction in materials and construction cost. In the case of steel structure, there is no critical risk in the structural strength because of reinforcing methods of stiffness and steel plate but in the case of reinforced concrete structure, proper provision should be made in designing these openings, otherwise there is a risk that these opening will possibly weaken the structural strength of the building frame to a critical degree. In this paper, for the numerical analysis of the reinforced concrete beams with circular opening in the web, expecting stress concentration of the circular opening, reinforcing methods were studied. Twenty test pieces with each different reinforcing methods were tested and their resisting forces were defined. From the numerical analysis and test results, the followings were founded;(1)high shear stress distributed around the openings reduce the shearing strength, (2)from the numerical analysis, the maximum tensile stress occurred at opening nodes 1,7, these phenomena were agreed with the test results, (3)reinforcing method around openings have to carried out for stopping diagonal cracks, and (4)both, by steel plate, and wire mesh, are effective reinforcing methods.

  • PDF

Seismic performance of RC frames retrofitted with haunch technique

  • Akbar, Junaid;Ahmad, Naveed;Alam, Bashir;Ashraf, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Shake table tests performed on five 1:3 reduced scale two story RC moment resisting frames having construction defects, have shown severe joint damageability in deficient RC frames, resulting in joint panels' cover spalling and core concrete crushing. Haunch retrofitting technique was adopted herein to upgrade the seismic resistance of the deficient RC frames. Additional four deficient RC frames were built and retrofitted with steel haunch; both axially stiffer and deformable with energy dissipation, fixed to the beam-column connections to reduce shear demand on joint panels. The as-built and retrofitted frames' seismic response parameters are calculated and compared to evaluate the viability of haunch retrofitting technique. The haunch retrofitting technique increased the lateral stiffness and strength of the structure, resulting in the increase of structure's overstrength. The retrofitting increased response modification factor R by 60% to 100%. Further, the input excitation PGA was correlated with the lateral roof displacement to derive structure response curve that have shown significant resistance of retrofitted models against input excitations. The technique can significantly enhance the seismic performance of deficient RC frames, particularly against the frequent and rare earthquake events, hence, promising for seismic risk mitigation.