• Title/Summary/Keyword: storm-water detention basin

Search Result 10, Processing Time 0.024 seconds

A Study on the Calculation of Storage Volume of Storm-Water Detention Basins for Small Urban Catchments (도심지 소유역에 적용 가능한 우수저류조의 용량 산정에 관한 연구)

  • Kim, Dae Geun;Koh, Young Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.619-624
    • /
    • 2005
  • This work is for examining a simplified equation based on the rational formula, which can easily decide storm-water detention volume in small urban catchments. The storm-water detention volume is determined by the inflow hydrograph flowing to detention basin and the outflow hydrograph discharged from the detention basin. The ratio of average outflow over the period of rainfall duration against allowable discharge was 0.5 in former simplified equation. But this research has found that the average outflow ratio depends on the storage methodology. In the case of the on-line storage method, the average outflow ratio is a function of the time of concentration of the catchments and rainfall duration, which ranged from 0.5~1.0. In the case of the off-line storage method, the average ratio is a function of peak discharge and allowable discharge except above time of concentration and rainfall duration, where its function value ranged from 1.0~2.0. When applying this equation to small catchment in Mokpo city, South Korea, we could easily calculate the relation curve between the storm-water detention volume and allowable discharge.

Optimization of Detention Basin at Watershed Level Scale

  • Ngo, Thi Thuy;Yazdi, Jafar;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.218-218
    • /
    • 2015
  • Urbanization and waterworks construction in natural watershed have been causing higher flood risks in lowland areas. Detention basins have become one of the most efficient fundamental instruments for storm water and environmental management at watershed scale. Nowadays, there are many studies coupled numerical methods of flood routing with optimization algorithms to investigate factors that impact on the efficiency of detention basins in flood reduction in a watershed, such as detention basin location, size, and cost and watershed characteristics. Although these couplings have been become more widespread but cumbersome computation and hydraulic data requirement still are their limitations. To tackle the procedure efforts due to numerical integration and data collection, simple approach is proposed to primarily estimate effects of detention basins. The approach basis is the linear system theory applied to the solution of hydrologic flood routing. The paper introduces an analytical method for estimating detention effects deriving by recent studies and innovatively analyses this equation on fractal perspective. Then, an optimization technique is performed by applying harmony search algorithms (HSA) to optimize efficiency of detention basins at watershed scale. The location and size of upstream detention basin are simultaneously obtained. Finally, the proposed methodology, practically applied for a real watershed in Kan river, Iran.

  • PDF

SS Removal-rate Efficiency of Storm-water Detention Storage Tank Depending upon Length, Inside Training Wall and Gravel Filling (우수저류조의 형상과 도류벽 및 자갈채움에 따른 SS 제거효율)

  • Lee, Jong Tae;Seo, Hong Joon;Seo, Kyung A
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.655-667
    • /
    • 2009
  • An experimental study is performed on reducing the pollutants supplied by storm water through enhancing efficiency of SS from the detention storage tank where CSOs are kept temporarily before discharge to the receiving water system. SS removal efficiency is investigated in accordance with various conditions of the detention pond-such as its length, the existence of training wall, and the use of gravel filling. The removal efficiency is strongly affected by the detention pond's length until the critical falling distance of the suspended solids is reached. For cases where the tank has a length longer than this critical condition, the removal rate shows less sensitivity. To enhance the SS removal efficiency of tanks of shorter than the critical length, we studied alternative types of tank in which inside training walls are installed. The results showed improvement of 14 to 37% in removal efficiency in 2hours detention(2 training walls). The important factor in achieving a high SS removal rate is ensuring the critical length of the detention pond, but for the cases where the basin length cannot be guaranteed, baffles or a gravel filling scheme may be introduced to attain considerable efficiency. The results of studying and comparing different storage tank conditions show that, in terms of elimination efficiency, a storage tank with gravel filling and training walls > a storage tank with gravel filling > a storage tank with training walls > an empty tank. The experimental results should contribute to development of related further research, by empirically verifying the already assumed importance of critical falling distance, training walls, and gravel filling schemes.

Optimal Design of Detention System using Incremental Dynamic Programming

  • Lee, Kil-Seong;Lee, Beum-Hee
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.61-75
    • /
    • 1996
  • The purpose of this study is to develop an efficient model for the least cost design of multi-site detention systems. The IDP (Incremental Dynamic Programming) model for optimal design is composed of two sub-models : hydrologic-hydraulic model and optimization model. The objective function of IDP is the sum of costs ; acquisition cost of the land, construction cost of detention basin and pumping system. Model inputs include channel characteristics, hydrologic parameters, design storm, and cost function. The model is applied to the Jung-Rang Cheon basin in Seoul, a watershed with cetention basins in multiple branching channels. The application results show that the detention system can be designed reasonably for various conditions and the model can be applied to multi-site detention system design.

  • PDF

Optimal Design of Datention System using Incremental Dynamic Programming (동적계획법을 이용한 유수체계의 최적설계)

  • 이길성;이범희
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.153-168
    • /
    • 1995
  • The purpose of this study is to develop an efficient model for the least cost design of multisite detention systems. The IDP (Incremental Dynamic Programming) model for optimal design is composed of two sub-models: hydrologic - hydraulic model and optimization model. The objective function of IDP is the sum of costs; acquisition cost of the land, construction cost of detention basin and pumping system. Model inputs include channel characteristics, hydrologic paramenters, design storm, and cost function. The model is applied to the Jung- Rang Cheon basin in Seoul, a watershed with detention basins in multiple branching channels. The application results show that the detention system can be designed reasonably for various conditions and the model can be applied to multi-site detention system design.

  • PDF

A Study on the Effect of Water Quality Improvement of a Storm Sewage by Detention Pond (저류지에 의한 우수의 수질개선 효과 연구)

  • Lee, Jong-Tae;Song, Chi-Heung;Gang, Tae-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.351-364
    • /
    • 2000
  • The effect of water quality improvement of combined sewage by detention pond has been studied. It is convinced that the pollutant load and peak flow through the combined sewer by first rainfall and runoff can be decreased by detention pond sited at the outlet of small basin. Hydraulic modeling of detention panel was performed for two cases of sedimentation pond and gravel contact pond. It has been recognized that it is more efficient to reduce the pollutant of combined sewage when the combined sewage is released alter a fixed detention time in the detention pond than it is released continuously without detention time. The gravel contact detention pond shows higher pollutant removal rate than the sedimentation detention pond in all pollutants. When it comes to gravel contact detention pond, the gravel pond filled with crushed gravel has a higher pollutant removal rate than that filled with river gravel.

  • PDF

Distribution of average rainfall event-depth for overflow risk-based design of detention storage basin (월류위험도 기반 저류지 설계를 위한 평균강우량도 작성)

  • Kim, Dae Geun;Park, Sun Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea, and the continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average rainfall event-depth were created to facilitate the application to the overflow risk-based design of detention storage basin. This study shows that 4 hour is appropriate for SST (storm separation time) to separate individual rainfall events from the continuous rainfall data, and the one-parameter exponential distribution is suitable for the frequency distribution of rainfall event depths for the domestic rainfall data. The analysis of the domestic rainfall data using SST of 4 hour showed that the individual rainfall event was 1380 to 2031 times, the average rainfall event-depth was 19.1 to 32.4mm, and ranged between 0.877 and 0.926. Distribution charts of average rainfall event-depth were created for 4hour and 6 hour of SST, respectively. The inland Gyeongsangbuk-do, Western coastal area and inland of Jeollabuk-do had relatively lower average rainfall event-depth, whereas Southern coastal area, such as Namhae, Yeosu, and Jeju-do had relatively higher average rainfall event-depth.

Estimation of Soil Erosion and Sediment Yield in Mountainous Stream (산지형 하천의 토양침식 및 토사유출량 산정)

  • Ko, Jae-Wook;Yang, Sung-Kee;Yang, Won-Seok;Jung, Woo-Yeol;Park, Cheol-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.599-608
    • /
    • 2013
  • Jeju island, which is located along the moving path of typhoon, suffers from flooding and overflow by torrential rain. So abrupt runoff occurring, damages of downstream farm field and shore culturing farms are increasing. In this study, Oaedo stream, one of the mountainous streams on Jeju island, was selected as the basin of study subject and was classified into 3 sub-basins, and after the characteristics of subject basin, the soil erosion amount and the sediment delivery of the stream by land usage distribution were estimated with the use of SATEEC ArcView GIS, the sediment yield amount of 2000 and 2005 was analyzed comparatively. As a result of estimating the sediment yield amount of 2000, the three sub-basins were respectively 12,572.7, 14,080 and 157,761 tons/year. and sediment yield amounts were estimated as 35,172.9, 5,266 and 258,535 tons/year respectively in 2005. The soil erosion and sediment yield amount of 2005 using single storm rainfall were estimated high compared with 2000, but for sub-basin 2, the values rather decreased due to changes in land use, and the land coverage of 2005, since there are many classifications of land usage compared with 2000, enabling to reflect more accurate land usage condition, could deduce appropriate results. It is anticipated that such study results can be utilized as basic data to propose a direction to predict the amount of sediment yield that causes secondary flooding damage and deteriorates water quality within detention pond and grit chamber, and take action against damages in the downstream farm field and shore culturing farms.

Development of Optimal Design Simulation Model for Least Cost Urban Sewer System Considering Risk (II) (위험도를 고려한 최소비용 도시우수관망 설계의 최적화 모형개발 (II): 위험도를 고려한 최적화 모형)

  • Park, Sang-Woo;Jang, Suk-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1029-1037
    • /
    • 2005
  • Urban Storm Sewer Optimal Design Model(USSOD) was developed to compute pipe capacity, pipe slope, crown elevation, excavation depth, risk and return cost in the condition of design discharge. Rational formula is adopted for design discharge and Manning's formula is used for pipe capacity. Discrete differential dynamic programming(DDDP) technique which is a kind of dynamic programming (DP) is used for optimization and first order second moment approximation method and uncertainty analysis is also for developing model. USSOD is applied to hypothetical drainage basin to test and verify. After testing the model, it is also applied to Ulsan drainage basin which was developed by Korea Land Cooperation(KOLAND). Comparing the design results of USSOD with those of KOLAND, discharge capacity 0.35 $m^3/sec$, the crown elevation is 0.77m higher and return cost is $9\%$ less than design results of KOLAND, which verify the improvement of USSOD. Layout design model using GIS and optimization including detention or retention effect are needed in the future study.

Characteristics of Coagulants Distribution by the Pumping Rate in Pump Diffusion Mixer (Pump Diffusion Mixer에서 압력수량에 따른 응집제 확산분포 특성)

  • Park, Youngoh;Kim, Ki-Don;Park, No-Suk;Lim, Jae-Lim;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.65-71
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea, and the continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average rainfall event-depth were created to facilitate the application to the overflow risk-based design of detention storage basin. This study shows that 4 hour is appropriate for SST (storm separation time) to separate individual rainfall events from the continuous rainfall data, and the one-parameter exponential distribution is suitable for the frequency distribution of rainfall event depths for the domestic rainfall data. The analysis of the domestic rainfall data using SST of 4 hour showed that the individual rainfall event was 1380 to 2031 times, the average rainfall event-depth was 19.1 to 32.4mm, and ranged between 0.877 and 0.926. Distribution charts of average rainfall event-depth were created for 4hour and 6 hour of SST, respectively. The inland Gyeongsangbuk-do, Western coastal area and inland of Jeollabuk-do had relatively lower average rainfall event-depth, whereas Southern coastal area, such as Namhae, Yeosu, and Jeju-do had relatively higher average rainfall event-depth.