• Title/Summary/Keyword: store service

Search Result 953, Processing Time 0.024 seconds

Problem Identification and Improvement Measures through Government24 App User Review Analysis: Insights through Topic Model (정부24 앱 사용자 리뷰 분석을 통한 문제 파악 및 개선방안: 토픽 모델을 통한 통찰)

  • MuMoungCho Han;Mijin Noh;YangSok Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.27-35
    • /
    • 2023
  • Fourth Industrial Revolution and COVID-19 pandemic have boosted the use of Government 24 app for public service complaints in the era of non-face-to-face interactions. there has been a growing influx of complaints and improvement demands from users of public apps. Furthermore, systematic management of public apps is deemed necessary. The aim of this study is to analyze the grievances of Government 24 app users, understand the current dissatisfaction among citizens, and propose potential improvements. Data were collected from the Google Play Store from May 2, 2013, to June 30, 2023, comprising a total of 6,344 records. Among these, 1,199 records with a rating of 1 and at least one 'thumbs-up' were used for topic modeling analysis. The analysis revealed seven topics: 'Issues with certificate issuance,' 'Website functionality and UI problems,' 'User ID-related issues,' 'Update problems,' 'Government employee app management issues,' 'Budget wastage concerns ((It's not worth even a single star) or (It's a waste of taxpayers' money)),' and 'Password-related problems.' Furthermore, the overall trend of these topics showed an increase until 2021, a slight decrease in 2022, but a resurgence in 2023, underscoring the urgency of updates and management. We hope that the results of this study will contribute to the development and management of public apps that satisfy citizens in the future.

Performance of Passive UHF RFID System in Impulsive Noise Channel Based on Statistical Modeling (통계적 모델링 기반의 임펄스 잡음 채널에서 수동형 UHF RFID 시스템의 성능)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.835-840
    • /
    • 2023
  • RFID(Radio Frequency Identification) systems are attracting attention as a key component of Internet of Things technology due to the cost and energy efficiency of application services. In order to use RFID technology in the IoT application service field, it is necessary to be able to store and manage various information for a long period of time as well as simple recognition between the reader and tag of the RFID system. And in order to read and write information to tags, a performance improvement technology that is strong and reliable in poor wireless channels is needed. In particular, in the UHF(Ultra High Frequency) RFID system, since multiple tags communicate passively in a crowded environment, it is essential to improve the recognition rate and transmission speed of individual tags. In this paper, Middleton's Class A impulsive noise model was selected to analyze the performance of the RFID system in an impulsive noise environment, and FM0 encoding and Miller encoding were applied to the tag to analyze the error rate performance of the RFID system. As a result of analyzing the performance of the RFID system in Middleton's Class A impulsive noise channel, it was found that the larger the Gaussian noise to impulsive noise power ratio and the impulsive noise index, the more similar the characteristics to the Gaussian noise channel.

Analysis of Topic Changes in Metaverse Application Reviews Before and After the COVID-19 Pandemic Using Causal Impact Analysis Techniques (Causal Impact 분석 기법을 접목한 COVID-19 팬데믹 전·후 메타버스 애플리케이션 리뷰의 토픽 변화 분석)

  • Lee, Sowon;Mijin Noh;MuMoungCho Han;YangSok Kim
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • Metaverse is attracting attention as the development of virtual environment technology and the emergence of untact culture due to the COVID-19 pandemic. In this study, by analyzing users' reviews on the "Zepeto" application, which has recently attracted attention as a metaverse service, we tried to confirm changes in the requirements for the metaverse after the COVID-19 pandemic. To this end, 109,662 reviews of "Zepeto" applications written on the Google Play Store from September 2018 to March 2023 were collected, topics were extracted using LDA topic modeling technique, and topics were analyzed using the Causal Impact technique to examine how topics changed before and after based on "March 11, 2020" when the COVID-19 pandemic was declared. As a result of the analysis, five topics were extracted: application functional problems (topic1), security problems (topic 2), complaints about cryptocurrency (Zem) in the application (topic 3), application performance (topic 4), and personal information-related problems (topic 5). Among them, it was confirmed that security problems (topic 2) were most affected by the COVID-19 pandemic.

The Effects of Perceived Quality Factors on the Customer Loyalty: Focused on the Analysis of Difference between PB and NB (지각된 품질요인이 고객충성도에 미치는 영향: PB와 NB간의 차이분석)

  • Ye, Jong-Suk;Jun, So-Yon
    • Journal of Distribution Research
    • /
    • v.15 no.2
    • /
    • pp.1-34
    • /
    • 2010
  • Introduction As consumers' purchase behavior change into a rational and practical direction, the discount store industry came to have keen competition along with rapid external growth. Therefore as a solution, distribution businesses are concentrating on developing PB(Private Brand) which can realize differentiation and profitability at the same time. And as improvement in customer loyalty beyond customer satisfaction is effective in surviving in an environment with keen competition, PB is being used as a strategic tool to improve customer loyalty. To improve loyalty among PB users, it is necessary to develop PB by examining properties of a customer group, first of all, quality level perceived by consumers should be met to obtain customer satisfaction and customer trust and consequently induce customer loyalty. To provide results of systematic analysis on relations between antecedents influenced perceived quality and variables affecting customer loyalty, this study proposed a research model based on causal relations verified in prior researches and set 16 hypotheses about relations among 9 theoretical variables. Data was collected from 400 adult customers residing in Seoul and the Metropolitan area and using large scale discount stores, among them, 375 copies were analyzed using SPSS 15.0 and Amos 7.0. The findings of the present study followed as; We ascertained that the higher company reputation, brand reputation, product experience and brand familiarity, the higher perceived quality. The study also examined the higher perceived quality, the higher customer satisfaction, customer trust and customer loyalty. The findings showed that the higher customer satisfaction and customer trust, the higher customer loyalty. As for moderating effects between PB and NB in terms of influences of perceived quality factors on perceived quality, we can ascertain that PB was higher than NB in the influences of company reputation on perceived quality while NB was higher than PB in the influences of brand reputation and brand familiarity on perceived quality. These results of empirical analysis will be useful for those concerned to do marketing activities based on a clearer understanding of antecedents and consecutive factors influenced perceived quality. At last, discussions about academical and managerial implications in these results, we suggested the limitations of this study and the future research directions. Research Model and Hypotheses Test After analyzing if antecedent variables having influence on perceived quality shows any difference between PB and NB in terms of their influences on them, the relation between variables that have influence on customer loyalty was determined as Figure 1. We established 16 hypotheses to test and hypotheses are as follows; H1-1: Perceived price has a positive effect on perceived quality. H1-2: It is expected that PB and NB would have different influence in terms of perceived price on perceived quality. H2-1: Company reputation has a positive effect on perceived quality. H2-2: It is expected that PB and NB would have different influence in terms of company reputation on perceived quality. H3-1: Brand reputation has a positive effect on perceived quality. H3-2: It is expected that PB and NB would have different influence in terms of brand reputation on perceived quality. H4-1: Product experience has a positive effect on perceived quality. H4-2: It is expected that PB and NB would have different influence in terms of product experience on perceived quality. H5-1: Brand familiarity has a positive effect on perceived quality. H5-2: It is expected that PB and NB would have different influence in terms of brand familiarity on perceived quality. H6: Perceived quality has a positive effect on customer satisfaction. H7: Perceived quality has a positive effect on customer trust. H8: Perceived quality has a positive effect on customer loyalty. H9: Customer satisfaction has a positive effect on customer trust. H10: Customer satisfaction has a positive effect on customer loyalty. H11: Customer trust has a positive effect on customer loyalty. Results from analyzing main effects of research model is shown as

    , and moderating effects is shown as
    . Results This study is designed with 16 research hypotheses, Results from analyzing their main effects show that 9 of 11 hypotheses were supported and other 2 hypotheses were rejected. On the other hand, results from analyzing their moderating effects show that 3 of 5 hypotheses were supported and other 2 hypotheses were rejected. H1-1: (SPC: Standardized Path Coefficient)=-0.04, t-value=-1.04, p>. 05). H1-2: (${\Delta}\chi^2$=1.10, df=1, p> 0.05). H1-1 and H1-2 are rejected, so it is prove that perceived price is not a significant decision variable having influence on perceived quality and there is no significant variable between PB and NB in terms of influence of perceived price on perceived quality. H2-1: (SPC=0.31, t-value=3.74, p<. 001). H2-2: (${\Delta}\chi^2$=3.93, df=1, p< 0.05). H2-1 and H2-2 are supported, so it is proved that company reputation is a significant decision variable having influence on perceived quality and, in terms of influence of company reputation on perceived quality, PB has relatively stronger influence than NB. H3-1: (SPC=0.26, t-value=5.30, p< .001). H3-2: (${\Delta}\chi^2$=16.81, df=1, p< 0.01). H3-1 and H3-2 are supported, so it is proved that brand reputation is a significant decision variable having influence on perceived quality and, in terms of influence of brand reputation on perceived quality, NB has relatively stronger influence than PB. H4-1: (SPC=0.31, t-value=2.65, p< .05). H4-2: (${\Delta}\chi^2$=1.26, df=1, p> 0.05). H4-1 is supported, but H4-2 is rejected, Therefore, it is proved that product experience is a significant decision variable having influence on perceived quality and, on the other hand, there is no significant different between PB and NB in terms of influence of product experience on product quality. H5-1: (SPC=0.24, t-value=3.00, p<. 05). H5-2: (${\Delta}\chi^2$=5.10, df=1, p< 0.05). H5-1 and H5-2 are supported, so it is proved that brand familiarity is a significant decision variable having influence on perceived quality and, in terms of influence of brand familiarity on perceived quality, NB has relatively stronger influence than PB. H6: (SPC=0.91, t-value=19.06, p< .001). H6 is supported, so a fact that customer satisfaction increases as perceived quality increases is proved. H7: (SPC=0.81, t-value=7.44, p<. 001). H7 is supported, so a fact that customer trust increases as perceived quality increases is proved. H8: (SPC=0.57, t-value=7.87, p< .001). H8 is supported, so a fact that customer loyalty increases as perceived quality increases is proved. H9: (SPC=0.08, t-value=0.76, p> .05). H9 is rejected, so it is proved influence of customer satisfaction on customer trust is not significant. H10: (SPC=0.21, t-value=4.34, p< .001). H10 is supported, so a fact that customer loyalty increases as customer satisfaction increases is proved. H11: (SPC=0.40, t-value=5.68, p< .001). H11 is supported, so a fact that customer loyalty increases as customer trust increases is proved. Implications Although most of existing studies have used function, price, brand, design, service, brand name, store name as antecedent variables for perceived quality, this study used different antecedent variables in order to analyze and distinguish purchase group PB and NB through preliminary research. Therefore, this study may be used as preliminary data for a empirical study that is designed to be helpful for practical jobs. Also, this study is made to be easily applied to any practical job because SEM(Structural Equation Modeling), most strongly explaining the relation between observed variable and latent variable, is used for this study. This study suggests a new strategic point that, in order to increase customer loyalty, customer's perceived quality level should satisfied for inducing customer satisfaction, customer trust, and customer loyalty. Therefore, after finding an effective differentiating factors in perceived quality in order to increase customer loyalty through increasing perceived quality, this factor was made to be applied to PB and NB. Because perceived quality factors which is recognized as being important by consumers is different between PB and NB, this study suggests how to efficiently establish marketing strategy by enhancing a factor. Companies have mostly focused on profitability in terms of analyzing customer loyalty, but this study included positive WOM(word of mouth). Hence, this study suggests that it would be helpful for establishing customer loyalty when consumers have cognitive satisfaction and emotional satisfaction together. Limitations This study used variables perceived price, company reputation, brand reputation, product experience, brand familiarity in order to determine whether each constituent factor has different influence on perceived quality between purchase group PB and NB. These characteristic variables are made up on the basis of the preliminary research, but it is expected that more precise research result would be obtained if additional various variables are included in study. This study selected a practical product that is non-durable, low-priced and bestselling product in a discount store through the preliminary research because it can be easily estimated by consumers. Therefore. generalization of study would be more easily obtained if more various product characteristics is included. Regarding a sample used in this study, it was only based on consumers who purchase products in a large-scale discount store located in Seoul and in the capital area. Accordingly, this sample has some geographical limitation, If a study is expanded by including more areas, more representative research results may be produced. Because this study is only designed to analyze consumers who purchase a product in a large-scale discount store, some difference may be found according to characteristics of each business type. In other words, there is certainly some application limitation, so research result from this study may not be applied to other business types. Future research may have fruitful results if it adjusts a variable to each business type.

  • PDF
  • An Exploratory Study of REID Benefits for Apparel Retailing (의류소매업에서의 RFID 이점에 대한 탐색적 연구)

    • Kim, Hae-Jung;Kim, Eun-Young
      • Journal of the Korean Society of Clothing and Textiles
      • /
      • v.30 no.12 s.159
      • /
      • pp.1697-1707
      • /
      • 2006
    • Relentless advances in information technology are constantly transforming market dynamics of the retail industry. RFID is an emerging innovative technology that can reduce labor costs, improve inventory control and increase sales by effective business processes. Apparel retailers need to recognize the benefits of RFID and identify critical success factors. By focusing on apparel retailers, this study attempts (1) to identify the reality of RFID associated with benefits; and (2) to prospect the implementation of RFID in apparel retailing. We conducted a focus group interview with selected six panels who were experts of retail industry in the United States to obtain data regarding RFID attributes. Content analysis was used to generate related excerpts and classify 31 attributes of RFID benefits from the meaningful 173 responses. For experience of RFID, retailers were familiar with RFID technology and expressed the belief that RFID basically would support an existing retail system for speed to markets. However, retailers addressed the level of experience with RFID technology that they were still in the early adoption stage among few innovative companies. The content analysis identified five dimensions of RFID benefits for apparel retailing: Visibility and Velocity, Revenue Enhancement, Customer Service, Security, and Employee Productivity. This result lends support to the belief that RFID has a significant potential to streamline supply chain management, store operation and customer service for apparel retailing. This study provides intellectual and managerial implications far practitioners and researchers by postulating the effective use of RFID in the apparel retail industry.

    The Method for Real-time Complex Event Detection of Unstructured Big data (비정형 빅데이터의 실시간 복합 이벤트 탐지를 위한 기법)

    • Lee, Jun Heui;Baek, Sung Ha;Lee, Soon Jo;Bae, Hae Young
      • Spatial Information Research
      • /
      • v.20 no.5
      • /
      • pp.99-109
      • /
      • 2012
    • Recently, due to the growth of social media and spread of smart-phone, the amount of data has considerably increased by full use of SNS (Social Network Service). According to it, the Big Data concept is come up and many researchers are seeking solutions to make the best use of big data. To maximize the creative value of the big data held by many companies, it is required to combine them with existing data. The physical and theoretical storage structures of data sources are so different that a system which can integrate and manage them is needed. In order to process big data, MapReduce is developed as a system which has advantages over processing data fast by distributed processing. However, it is difficult to construct and store a system for all key words. Due to the process of storage and search, it is to some extent difficult to do real-time processing. And it makes extra expenses to process complex event without structure of processing different data. In order to solve this problem, the existing Complex Event Processing System is supposed to be used. When it comes to complex event processing system, it gets data from different sources and combines them with each other to make it possible to do complex event processing that is useful for real-time processing specially in stream data. Nevertheless, unstructured data based on text of SNS and internet articles is managed as text type and there is a need to compare strings every time the query processing should be done. And it results in poor performance. Therefore, we try to make it possible to manage unstructured data and do query process fast in complex event processing system. And we extend the data complex function for giving theoretical schema of string. It is completed by changing the string key word into integer type with filtering which uses keyword set. In addition, by using the Complex Event Processing System and processing stream data at real-time of in-memory, we try to reduce the time of reading the query processing after it is stored in the disk.

    Channel Innovation through Online Transaction processing System in Floral Wholesale Distribution: FLOMARKET Case (화훼도매 온라인 거래처리 시스템을 통한 유통경로 개선방안 연구: (주)플로마켓 사례)

    • Lee, Seungchang;Ahn, Sunghyuck
      • Journal of Distribution Science
      • /
      • v.8 no.1
      • /
      • pp.21-33
      • /
      • 2010
    • The ICT(information & communication technology) led to a dramatic change of floral distribution service, a phase of competition between wholesales and retail stores, and distribution channels in floral industry. It was expected that a role of the intermediaries in this industry would have reduced due to the improvement of transaction process by ICT. However, the ICT made to overcome a regional limit of the floral retail distribution service leading to an increase in sales and enlargement of the stores. And even it made possible to bring out another type of intermediaries such as private associations. This case study focuses on what kinds of efforts the floral wholesale distributors have made to enable a distribution process more smoothly between the wholesale distributors and retail stores through the information system, and what the failure factors in adopting the information system have been. This paper is also to examine how the wholesale distributors have changed themselves to gain dominant positions in distribution channels. As a result of the study, it was found that the intermediaries mostly failed in successfully achieving the distribution channel innovation through the information system because of several main reasons. FLOMARKET Inc. tried to innovate a distribution channel to obtain high quality goods through consolidating a wholesale distribution market in that segregated both floral joint market from free markets. after implementing the information system with consideration of the failure factors, FLOMARKET Inc. was able to minimize goods in stock and make a major purchase of various goods. In addition, it made a possible pre-ordering process and an exact calculation of purchasing goods so they could provide their products with market price in real time, which helped for the company to gain credits from their customers. Also, FLOMARKET Inc. established the information system which well suited to its business stage in order to deal with a rapidly changing distribution environment. It's so obvious that the transaction processing system of FLOMARKET Inc. definitely helped to share information among traders more seamlessly and smoothly in realtime, standardize goods, and make a transaction process clearer. Besides, the transaction information helped the wholesale distributors and retail stores to make more strategic decisions in their business because through the system they enabled to gather the marketing intelligence information more easily and convenient. If we understand that the floral distribution market is characterized by the low IT- based industry, it's worth to examine a case study proving that the information system actually increases the productivity of the transaction process in the floral industry.

    • PDF

    Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

    • Kim, Yoosin;Jeong, Seung Ryul
      • Journal of Intelligence and Information Systems
      • /
      • v.19 no.3
      • /
      • pp.113-125
      • /
      • 2013
    • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.

    Open Digital Textbook for Smart Education (스마트교육을 위한 오픈 디지털교과서)

    • Koo, Young-Il;Park, Choong-Shik
      • Journal of Intelligence and Information Systems
      • /
      • v.19 no.2
      • /
      • pp.177-189
      • /
      • 2013
    • In Smart Education, the roles of digital textbook is very important as face-to-face media to learners. The standardization of digital textbook will promote the industrialization of digital textbook for contents providers and distributers as well as learner and instructors. In this study, the following three objectives-oriented digital textbooks are looking for ways to standardize. (1) digital textbooks should undertake the role of the media for blended learning which supports on-off classes, should be operating on common EPUB viewer without special dedicated viewer, should utilize the existing framework of the e-learning learning contents and learning management. The reason to consider the EPUB as the standard for digital textbooks is that digital textbooks don't need to specify antoher standard for the form of books, and can take advantage od industrial base with EPUB standards-rich content and distribution structure (2) digital textbooks should provide a low-cost open market service that are currently available as the standard open software (3) To provide appropriate learning feedback information to students, digital textbooks should provide a foundation which accumulates and manages all the learning activity information according to standard infrastructure for educational Big Data processing. In this study, the digital textbook in a smart education environment was referred to open digital textbook. The components of open digital textbooks service framework are (1) digital textbook terminals such as smart pad, smart TVs, smart phones, PC, etc., (2) digital textbooks platform to show and perform digital contents on digital textbook terminals, (3) learning contents repository, which exist on the cloud, maintains accredited learning, (4) App Store providing and distributing secondary learning contents and learning tools by learning contents developing companies, and (5) LMS as a learning support/management tool which on-site class teacher use for creating classroom instruction materials. In addition, locating all of the hardware and software implement a smart education service within the cloud must have take advantage of the cloud computing for efficient management and reducing expense. The open digital textbooks of smart education is consdered as providing e-book style interface of LMS to learners. In open digital textbooks, the representation of text, image, audio, video, equations, etc. is basic function. But painting, writing, problem solving, etc are beyond the capabilities of a simple e-book. The Communication of teacher-to-student, learner-to-learnert, tems-to-team is required by using the open digital textbook. To represent student demographics, portfolio information, and class information, the standard used in e-learning is desirable. To process learner tracking information about the activities of the learner for LMS(Learning Management System), open digital textbook must have the recording function and the commnincating function with LMS. DRM is a function for protecting various copyright. Currently DRMs of e-boook are controlled by the corresponding book viewer. If open digital textbook admitt DRM that is used in a variety of different DRM standards of various e-book viewer, the implementation of redundant features can be avoided. Security/privacy functions are required to protect information about the study or instruction from a third party UDL (Universal Design for Learning) is learning support function for those with disabilities have difficulty in learning courses. The open digital textbook, which is based on E-book standard EPUB 3.0, must (1) record the learning activity log information, and (2) communicate with the server to support the learning activity. While the recording function and the communication function, which is not determined on current standards, is implemented as a JavaScript and is utilized in the current EPUB 3.0 viewer, ths strategy of proposing such recording and communication functions as the next generation of e-book standard, or special standard (EPUB 3.0 for education) is needed. Future research in this study will implement open source program with the proposed open digital textbook standard and present a new educational services including Big Data analysis.

    Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

    • Pyun, Gwangbum;Yun, Unil
      • Journal of Internet Computing and Services
      • /
      • v.15 no.3
      • /
      • pp.101-107
      • /
      • 2014
    • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.