Problem Identification and Improvement Measures through Government24 App User Review Analysis: Insights through Topic Model (정부24 앱 사용자 리뷰 분석을 통한 문제 파악 및 개선방안: 토픽 모델을 통한 통찰)
-
- Smart Media Journal
- /
- v.12 no.11
- /
- pp.27-35
- /
- 2023
Fourth Industrial Revolution and COVID-19 pandemic have boosted the use of Government 24 app for public service complaints in the era of non-face-to-face interactions. there has been a growing influx of complaints and improvement demands from users of public apps. Furthermore, systematic management of public apps is deemed necessary. The aim of this study is to analyze the grievances of Government 24 app users, understand the current dissatisfaction among citizens, and propose potential improvements. Data were collected from the Google Play Store from May 2, 2013, to June 30, 2023, comprising a total of 6,344 records. Among these, 1,199 records with a rating of 1 and at least one 'thumbs-up' were used for topic modeling analysis. The analysis revealed seven topics: 'Issues with certificate issuance,' 'Website functionality and UI problems,' 'User ID-related issues,' 'Update problems,' 'Government employee app management issues,' 'Budget wastage concerns ((It's not worth even a single star) or (It's a waste of taxpayers' money)),' and 'Password-related problems.' Furthermore, the overall trend of these topics showed an increase until 2021, a slight decrease in 2022, but a resurgence in 2023, underscoring the urgency of updates and management. We hope that the results of this study will contribute to the development and management of public apps that satisfy citizens in the future.
RFID(Radio Frequency Identification) systems are attracting attention as a key component of Internet of Things technology due to the cost and energy efficiency of application services. In order to use RFID technology in the IoT application service field, it is necessary to be able to store and manage various information for a long period of time as well as simple recognition between the reader and tag of the RFID system. And in order to read and write information to tags, a performance improvement technology that is strong and reliable in poor wireless channels is needed. In particular, in the UHF(Ultra High Frequency) RFID system, since multiple tags communicate passively in a crowded environment, it is essential to improve the recognition rate and transmission speed of individual tags. In this paper, Middleton's Class A impulsive noise model was selected to analyze the performance of the RFID system in an impulsive noise environment, and FM0 encoding and Miller encoding were applied to the tag to analyze the error rate performance of the RFID system. As a result of analyzing the performance of the RFID system in Middleton's Class A impulsive noise channel, it was found that the larger the Gaussian noise to impulsive noise power ratio and the impulsive noise index, the more similar the characteristics to the Gaussian noise channel.
Metaverse is attracting attention as the development of virtual environment technology and the emergence of untact culture due to the COVID-19 pandemic. In this study, by analyzing users' reviews on the "Zepeto" application, which has recently attracted attention as a metaverse service, we tried to confirm changes in the requirements for the metaverse after the COVID-19 pandemic. To this end, 109,662 reviews of "Zepeto" applications written on the Google Play Store from September 2018 to March 2023 were collected, topics were extracted using LDA topic modeling technique, and topics were analyzed using the Causal Impact technique to examine how topics changed before and after based on "March 11, 2020" when the COVID-19 pandemic was declared. As a result of the analysis, five topics were extracted: application functional problems (topic1), security problems (topic 2), complaints about cryptocurrency (Zem) in the application (topic 3), application performance (topic 4), and personal information-related problems (topic 5). Among them, it was confirmed that security problems (topic 2) were most affected by the COVID-19 pandemic.
Introduction As consumers' purchase behavior change into a rational and practical direction, the discount store industry came to have keen competition along with rapid external growth. Therefore as a solution, distribution businesses are concentrating on developing PB(Private Brand) which can realize differentiation and profitability at the same time. And as improvement in customer loyalty beyond customer satisfaction is effective in surviving in an environment with keen competition, PB is being used as a strategic tool to improve customer loyalty. To improve loyalty among PB users, it is necessary to develop PB by examining properties of a customer group, first of all, quality level perceived by consumers should be met to obtain customer satisfaction and customer trust and consequently induce customer loyalty. To provide results of systematic analysis on relations between antecedents influenced perceived quality and variables affecting customer loyalty, this study proposed a research model based on causal relations verified in prior researches and set 16 hypotheses about relations among 9 theoretical variables. Data was collected from 400 adult customers residing in Seoul and the Metropolitan area and using large scale discount stores, among them, 375 copies were analyzed using SPSS 15.0 and Amos 7.0. The findings of the present study followed as; We ascertained that the higher company reputation, brand reputation, product experience and brand familiarity, the higher perceived quality. The study also examined the higher perceived quality, the higher customer satisfaction, customer trust and customer loyalty. The findings showed that the higher customer satisfaction and customer trust, the higher customer loyalty. As for moderating effects between PB and NB in terms of influences of perceived quality factors on perceived quality, we can ascertain that PB was higher than NB in the influences of company reputation on perceived quality while NB was higher than PB in the influences of brand reputation and brand familiarity on perceived quality. These results of empirical analysis will be useful for those concerned to do marketing activities based on a clearer understanding of antecedents and consecutive factors influenced perceived quality. At last, discussions about academical and managerial implications in these results, we suggested the limitations of this study and the future research directions. Research Model and Hypotheses Test After analyzing if antecedent variables having influence on perceived quality shows any difference between PB and NB in terms of their influences on them, the relation between variables that have influence on customer loyalty was determined as Figure 1. We established 16 hypotheses to test and hypotheses are as follows; H1-1: Perceived price has a positive effect on perceived quality. H1-2: It is expected that PB and NB would have different influence in terms of perceived price on perceived quality. H2-1: Company reputation has a positive effect on perceived quality. H2-2: It is expected that PB and NB would have different influence in terms of company reputation on perceived quality. H3-1: Brand reputation has a positive effect on perceived quality. H3-2: It is expected that PB and NB would have different influence in terms of brand reputation on perceived quality. H4-1: Product experience has a positive effect on perceived quality. H4-2: It is expected that PB and NB would have different influence in terms of product experience on perceived quality. H5-1: Brand familiarity has a positive effect on perceived quality. H5-2: It is expected that PB and NB would have different influence in terms of brand familiarity on perceived quality. H6: Perceived quality has a positive effect on customer satisfaction. H7: Perceived quality has a positive effect on customer trust. H8: Perceived quality has a positive effect on customer loyalty. H9: Customer satisfaction has a positive effect on customer trust. H10: Customer satisfaction has a positive effect on customer loyalty. H11: Customer trust has a positive effect on customer loyalty. Results from analyzing main effects of research model is shown as