• Title/Summary/Keyword: storage cavern

Search Result 115, Processing Time 0.021 seconds

Investigation and Design of Underground Cavern for Oil Storage in Korea (국내 원유 비축 지하공동의 조사 및 설계 사례)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.190-198
    • /
    • 1992
  • This study is to summarize the contents for the investigation and design of the construction for oil storage. Since underground caverns are large scale, in their construction one should consider the mechanical stability of caverns and the economic view of construction. On the basis of them, cavern's section and layout were determined and water curtains were designed to maintain hydraulic equilibrium so that gases were sealed tightly. Also the supporting criterial for rock bolt and stotcrete were determined by means of the classification of rock masses and the results of finite element method. The criteria of grouting reinforcement were presented according to the results of injection test in the pilot holes of working face.

  • PDF

A Study on the Underground Structure of Underground Storage Cavern by Seismic Surveying (탄성파측양에 의한 지하저장시설의 지하구조조사에 관한 연구)

  • Yeu, Bock-Mo;Kwon, Hyon;Kim, Joong-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.2 no.1
    • /
    • pp.34-45
    • /
    • 1984
  • The condition of underground basic rock and the location of cavern site can be found by means of seismic surveying is one of the physical exploration methods by which the prelimirary investigation of underground storage constructions are made in order to maximize the use of a land. This study is valuable in the point of showing a method for the decision of the property of a underground facilities estabilishment, by analying the elastic wave velocity and the distribution of a lower velocity zone and by grasping the weak zone of the basic rock.

  • PDF

Status and Issues for Underground Space Development in Singapore (싱가포르 지하공간 개발의 현황 및 이슈)

  • Lee, Hee Suk;Zho, Yingxin
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.304-324
    • /
    • 2018
  • Singapore government is strongly promoting the development and utilization of underground space in national level due to the nature of the city state which lacks the land. As well as conventional underground utilization in shallow depth such as metro and underground roads, large rock cavern utilization has been started after the successful completion of the underground ammunition depot in the rock, and Jurong Rock Cavern, the second large underground cavern project has just been completed. In this paper, after evaluating the conditions of the underground development in rock mass through the analysis of the geology of Singapore, the history and current status of underground development are examined. Several creative development plans from Singapore government such as underground reservoirs, underground automation logistics systems and underground warehouses storage etc. are introduced with technical issues. This paper also discusses the problems and issues related to the development of large underground space in rock mass in Singapore. It is expected that such active development of underground space in Singapore can give many opportunities and also challenges for rock engineering and industry in the future.

A comparative study on stability evaluation of caverns by 2D continuum analysis in terms of shape factor (2차원 연속체 해석에 의한 지하공동 형상비별 안정성 평가 비교)

  • You, Kwang-Ho;Jung, Ji-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.193-205
    • /
    • 2008
  • The construction of underground structures such as oil and food storage caverns are recently increasing in our country. The stability of those underground caverns are greatly influenced by their shape and size. In this study therefore, the effect that the shape of an underground cavern have on its stability were analyzed in terms of safety factor. To this end, caverns with 5 different shapes were investigated and sensitivity analyses were performed based on rock class, overburden, and lateral earth pressure coefficient. The proper amount of shotcrete and rockbolt as supports of a cavern was also assumed based on the shape and site of the cavern and rock conditions. This study is expected to be helpful in designing and evaluating the stability of caverns in future.

  • PDF

A Study on the Support System of Large Caverns Under High Initial Stress (과지압 하에 있는 대규모 지하공동의 지보 시스템에 관한 연구)

  • 박연준;유광호;최영태;김재용
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.154-166
    • /
    • 2004
  • A numerical stability analysis was conducted on the large oil storage caverns excavated in a rock mass under high initial horizonal stress. The behaviors of the surrounding rock mass, rockbolts, and shotcrete were analyzedr and stability of the support members were assessed. For a proper support system design, the effect of the modelling technique, cavern shape and rockbolt length on the stability of the cavern was investigated. Results show that installation timing of supports and the change in cavern shape due to stepwise excavation affect the stress induced in support members. Also found was desperate need for a numerical technique which can properly reflect the behavior of the steel fiber reinforced shotcrete.

Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes (지하 열저장 공동의 종횡비와 저장용량에 따른 열성층화 및 열손실)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.308-318
    • /
    • 2013
  • Thermal stratification in heat stores is essential to improve the efficiency of energy storage systems and deliver more useful energy on demand. It is generally well known that the degree of thermal stratification in heat stores varies depending on the aspect ratio (the height-to-width ratio) and size of the stores. The present study aims to investigate the effect of the aspect ratio and storage volume of rock caverns for storing hot water on thermal stratification in the caverns and heat loss to the surroundings. Heat transfer simulations using a computational fluid dynamics code, FLUENT were performed at different aspect ratios and storage volumes of rock caverns. The variation of thermal stratification with respect to time was examined using an index to quantify the degree of stratification, and the heat loss to the surroundings was evaluated. The results of the numerical simulations demonstrated that the thermal stratification in rock caverns was improved by increasing the aspect ratio, but this effect was not remarkable beyond an aspect ratio of 3-4. When the storage volume of rock caverns was large, a higher thermal stratification was maintained for a relatively longer time compared to caverns with a small storage volume, but the difference in thermal stratification between the two cases tended to decrease as the aspect ratio became larger. In addition, the numerical results showed that the heat loss to the surrounding rock tended to increase with an increase in aspect ratio because the surface area of rock caverns increased as the aspect ratio became larger. The total heat loss from multiple small caverns with a reduced storage volume per cavern was larger compared to a single cavern with the same total storage volume as that of the multiple caverns.

Thermodynamic Energy Balance Analysis of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동의 열역학적 에너지수지 분석)

  • Kim, Hyung-Mok;Park, Do-Hyun;Ryu, Dong-Woo;Choi, Byung-Hee;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.297-306
    • /
    • 2011
  • In this paper, we performed thermodynamic energy balance analysis of the underground lined rock cavern for compressed air energy storage (CAES) using the results of multi-phase heat flow analysis to simulate complex groundwater-compressed air flow around the cavern as well as heat transfer to concrete linings and surrounding rock mass. Our energy balance analysis demonstrated that the energy loss for a daily compression and decompression cycle predominantly depends on the energy loss by heat conduction to the concrete linings and surrounding rock mass for a sufficiently air-tight system with low permeability of the concrete linings. Overall energy efficiency of the underground lined rock caverns for CAES was sensitive to air injection temperature, and the energy loss by heat conduction can be minimized by keeping the air injection temperature closer to the ambient temperature of the surroundings. In such a case, almost all the heat loss during compression phase was gained back in a subsequent decompression phase. Meanwhile, the influence of heat conductivity of the concrete linings to energy efficiency was negligible.

Guideline for the Diagnose of Geotechnical Structure (Underground Oil Storage Cavern) using a Microseismic Monitoring System (음향미소진동기반 모니터링 시스템을 이용한 지반구조물(유류 지하저장시설) 진단평가 가이드라인)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.293-303
    • /
    • 2018
  • Monitoring is the act of collecting and analyzing accurate engineering information using various methods and instruments. The purposes of the monitoring are design verification, construction management, quality control, safety management, and diagnose of structure etc.. The diagnose evaluation of the geotechnical structures corresponds to the confirmation of the structural performance. It is aimed to judge the soundness of geotechnical structures considering the degree of damage due to the environmental change and elapsed time. Recently, microseismicity, which is widely known in Korea, can be used for safety management and diagnoses of structure as it detects the micro-damage without disturbance of the structure. This report provides guideline on the procedure for assessing an underground oil storage cavern using microseismic monitoring techniques. Guidelines cover the selection of monitoring systems, sensor array, sensor installation and operation of systems, and interpretation.

Transient heat conduction in rock mass around arch shape cold storage cavern and estimation of in-situ thermal properties (아치형 냉동저장공동 주위암반의 비정상상태 열전도 특성 및 열물성 평가)

  • Synn, Joong-Ho;Park, Yeon-Jun;Kim, Ho-Yeong;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • The characteristics of heat conduction for the heat source boundary like an arch shape cavern are different from those for the semi-infinite or circular boundary which can be driven theoretically. A new form of transient heat conduction equation in rock mass around the arch shape cavern is evaluated with analyzing the pattern of the rock temperature distribution measured at the cold storage pilot plant. The new equation, which is driven by adopting a shape function, $SF=\sqrt{logx_0/log(x_0+x)}$ to the solution for a semi-infinite boundary, has the semi-radial form of temperature variation with distance. And, thermal properties of rock mass are estimated by comparing the rock temperature distributions by this equation with those by measurement. Thermal conductivity and specific heat of rock mass are estimated as giving the difference of 20~25% compared to those of laboratory scale. This difference seems to be caused by discontinuity like joint and water content in rock mass.

  • PDF

Uncertainty Analysis for Head and Gradient Incorporating Spatial Nonuniformity of Hydraulic Conductivity around Underground Storage Caverns (지하공동주변 수리전도도의 불균일성을 도입한 수두 및 동수경사의 불확실성 해석)

  • Jeong, Il-Mun;Jo, Won-Cheol;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.553-564
    • /
    • 1998
  • For the proper design and management of underground storage cavern, groundwater flow around cavern should be analyzed. Since this flow is influenced by spatial nonuniformity of hudraulic conductivity, the two-dimensional finite element flow model incorporating stochastic concepts was developed to analyze influences due to this nonuniformity. Monte Carlo technique was applied to obtain an approximate solution for two-dimensional, steady flow in a stochastically defined nonuniform medisu. For this purpose, the values of hydraulic conductivity were generated for each element with known mean and standard deviations. The uncertainty in model prediction depends on both the nonuniformity in hydraulic conductivity and the natures of the flow system such as water curtain and boundary condition. Therefore the uncertainties in predicted hydraulic head and gradient are the greatest where the mean hydraulic gradients are relatively large and far from the boundaries. Especially, we relate these uncertainties with well known gas tightness condition.

  • PDF