• Title/Summary/Keyword: stone pagoda

Search Result 241, Processing Time 0.025 seconds

Study on the character of architecture remains in Gwangmyeong-dong site, Geongju (경주 광명동유적 건물지의 성격에 대하여)

  • Kim, Kwang-Su
    • Journal of architectural history
    • /
    • v.23 no.5
    • /
    • pp.37-45
    • /
    • 2014
  • It was identified by the excavation that architecture remains were confirmed buddhist temple consist of ruins of main building of a temple, auditorium site, ruins of stone pagoda, embankment, pedestrian Facilities and drainage etc. in the Gwangmyeong-dong site. The site has been held temple arrangement with 1 main building of a temple, twin Pagodas from the Unified Silla period to Goryeo dynasty. The temple constructed after that was destroyed the architecture in the Unified Silla period. It seems that aristocrat or royalty power of within group of the nearby remains of city which was constructed in the Unified Silla period build and visit the temple. Considering there are excavations, it assumes that the temple had been constructed during the last days of the Unified Silla, was closed up during the mid-Goryeo Dynasty.

3D Digital Restoration of Five-Storeyed Stone Pagoda on Jeonglim Temple Site (정림사지오층석탑 3차원 디지털복원)

  • 박찬석;전병호
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.549-552
    • /
    • 2004
  • It restores digitally the five-storeyed stone pagoda on Jeonglim temple site which is one of representative cultural assets of Baekje dynasty with the necessity of virtual heritage. We ensure d the exact data by actual measurement to guarantee the accuracy of digital restoration and restored original features 1500 years ago. The restoration result presents the process of change by animation methods from the manufacture time past to flow.

  • PDF

The conservation for excavated objects on foundation parts of three-story stone pagoda on Kamunsa temple site (감은사지 동삼층석탑 기단부 출토 유물 보존처리)

  • Moon, Whan-Suk;You, In-Sook
    • 보존과학연구
    • /
    • s.19
    • /
    • pp.159-177
    • /
    • 1998
  • Three-story Stone Pagoda(East) on Kamǔnsa temple constructed in A.D. 682 during the reign of King Shinmun-wang of the Unified Shilla period(668~935) was repaired by Cultural Properties Office in 1996. At that time, 27 objectsincluding sari case, small Buddha etc. were excavated. The 26 objects on foundation parts have been treated. Several objects were analyzed by EDXRF. As a result, the small Buddha of gilt bronze was proved to be an gold amalgam. The degree of gold purity was about 22K, and the excellence of gold-refining technique of that day was verified.

  • PDF

Seismic Test of a Full Scale Model of Five-Story Stone Pagoda of Sang-Gye-Sa (쌍계사 오층석탐 실물 크기 모델의 지진시험)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.388-395
    • /
    • 1999
  • There occurred a moderate size earthquake of M=5 at Whagae-Myun Hadong-Gun Kyongsangnam-Do of Korea, It caused severe damage to the buildings and other structures is Sang-Gye-Sa a famous and beautiful Buddhist Temple, The 5-story stone pagoda was standing in front of Keumdang. The top component tipped over and fell to the ground during the earthquake. In order to have accurate and quantitative estimate of the intensity of earthquake a full-scale replica is made through rigorous verification process, The completed model was mounted on the shaking table and subjected to th seismic tests. It was observed that the top component overturned at 0.16 G of EPGA when the NS component of the 1940 el Centro earthquake records was used as the input motion. A brief history of this project is presented and important test results are report6ed and their implication is discussed.

  • PDF

The biodeterioration and conservation of stone historical monuments (석조문화재의 생물학적 손상과 보존방안)

  • Chung, Yong-Jae;Seo, Min-Seok;Lee, Kyu-Shik;Han, Sung-Hee
    • 보존과학연구
    • /
    • s.24
    • /
    • pp.5-28
    • /
    • 2003
  • Stone has been one of the most intensely studied materials in conservation. Understanding the deterioration of stone needs various knowledge in different mineralogical and physical characteristics and its weathering response under different climate and environment. The alteration and weathering of stone is affected by natural or artificial elements whether they are physical, chemical or biological damaging factors. It can be said that the bio deterioration of stone is coupled with every environmental factors, which induce decomposition of stone structure, either directly or indirectly as a form of catalysis. Many elements contribute to the deterioration of stone monuments and other objects of cultural value such as pagoda, stature of Buddha, etc. This report concentrates on the action of biodeteriorative factorsincluding bacteria, algae and higher plants. Preventive and remedial methods and a selection of chemical treatments are also described.

  • PDF

Stability Evaluation of Multi-storied Stone Pagoda in the Daewonsa Temple using Three-dimensional Image Analysis (3차원 영상분석을 이용한 대원사다층석탑의 안정성 평가)

  • Jun, Byung-Kyu;Lee, Chan-Hee;Suh, Man-Cheol
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.31-42
    • /
    • 2008
  • A stone cultural heritage often lacks design drawing and detailed geometric informations, thus it becomes more difficult to conservation and restoration. Even though there is active database of detail shape information and numerical measurement for stone monuments, most of the data is in hard-to-utilize two-dimensional images. The new technology developed to overcome this problem is three-dimensional image scanning system. The multi-storied stone pagoda of the Daewonsa temple was analysed with 3D scanning image data then survey map with orientation displacement was evaluated. The difference of each side became apparent with the members of the stone properties was measured, also horizontal and vertical displacement occurred. Horizontal displacement occurred in increasing severity from left to right and from body section to upper part. The 8th roof stones are leaning toward northwest direction due to lateral displacement. The evaluation and measurement of displacement could cause a little errors due to the characteristics uneven surface of stone monuments, computer program and mistakes from the researcher. In future, more precise measurement and stability studies should be done to suggest that accurate data for conservation and understanding of damage condition can be provided.

  • PDF

Making Method of Deterioration Map and Evaluation Techniques of Surface and Three-dimensional Deterioration Rate for Stone Cultural Heritage (석조문화유산의 손상지도 제작방법과 표면 및 3차원 손상율 평가기법)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.251-260
    • /
    • 2011
  • This study focus on the suggestion of standard legend, the process system on making method of deterioration map, the development of crack index (CI), and the evaluation techniques of surface and 3D deterioration rate for stone cultural heritage. The standard legends of deterioration forms were made using a common graphic program after crack, blistering, scaling, break-out, granular disintegration, and perforation were subdivided. The deterioration map improved accuracy and reliability on deterioration range using 3D digital restoration and high resolution photograph mapping technique. Also, quantitative deterioration evaluation of stone cultural heritage was carried out developing the crack index, and the 3D deterioration rate of a break-out part was calculated by virtual restoration modeling. As a quantitative deterioration evaluation of Magoksa Temple stone pagoda based on the results described above, the north face showed high deterioration rate of bursting crack (1.70), hair crack (1.34), scaling (20.2%) and break out (13.0%), and the 3D deterioration rate of first roof stone was 6.7%.

Dynamic Test of a Full Scale Model of Five-Story Stone Pagoda of Sang-Gye-Sa (쌍계사 오층석탑 실물 크기 모델의 동적 거동 시험)

  • Kim, Jae-Kwan;Ryu, Hyeuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.51-66
    • /
    • 2001
  • There occurred a moderate size earthquake of Magnitude 5 in Whagae-Myun, Hadong-GUn, Kyongsangnam-Do on July 4, 1936. It caused severe damage to the buildings and other structures in Sang-Gye-Sa, a Buddhist Temple. The top component of a five-story stone pagoda was tipped over and fell down to the ground during the earthquake. In order to have accurate and quantitative estimate of the peak acceleration level of that earthquake, a full-scale model was constructed through rigorous verification process. The complete model was mounted on a shaking table and subjected to the dynamic tests. Two kinds of tests were performed: exploratory test and fragility test. The exploratory test was done with low acceleration level. In the fragility test, the behavior of the model was carefully monitored while increasing the acceleration level. The construction details of the model are provided and test procedures are reported. Finally important test results are presented and their implications are discussed.

  • PDF

Deterioration Assessment for Conservation Sciences of the Five Storied Stone Pagoda in the Jeongrimsaji Temple Site, Buyeo, Korea (부여 정림사지 오층석탑의 보존과학적 풍화훼손도 평가)

  • Kim, Yeong-Taek;Lee, Chan-Hee;Lee, Myeong-Seong
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.675-687
    • /
    • 2005
  • The rocks of the five storied stone pagoda in the Jeongrimsaji temple site are 149 materials in total with porphyritic biotite granodiorite. They include pegmatite veinlet, basic xenolith and evenly developed plagioclase porphyry. This stone pagoda has comparably small fracture and cracks which are farmed in the times of rock properties, but surface exfoliation and granular decomposition are in process actively since the rocks are generally weakened from the influence of air contaminants and acid rain. Structural instability of constituting rocks in the 4th roof materials are observed to occur from distortion and tilt. Such instability is judged to threat stability of the upper part of the stone pagoda. Also, chemical weathering is operating even more as the contaminants, ferro-manganese hydroxides eluted from water-rock interaction on the rock surface. Most of the rock surface is covered with yellowish brown, dark black and light gray contaminants, and especially occur in the lower part of the roof rocks on each floor. The roof underpinning rocks are severe in surface pigmentation from manganese hydroxides and light gray contaminants. The surface of rocks lives bacteria. algae, lichen, or moss and diverse productions in colors of light gray, dark Bray and dark green. Grayish white crustose lichen grows thick on the surface with darkly discolored by fungi and algae in the first stage on basement rocks, and weeds grows wild on the upper part of each roof rocks. This stone pagoda must closely observe the movements of the upper part rock materials through minute safety diagnosis and long term monitoring for structural stability. Especially since the surface discoloration of rocks and pigmentation of secondary contaminants are severe, establishment of general restoration and scientific conservation treatment are necessary through more detailed study for this stone pagoda.

The Damage Assessment, Construction Point of Time and Deterioration Diagnosis and Conservation Maintenance of Stone Statues Around the Stone Pagoda in Mireuksaji Temple in Iksan (익산 미륵사지 석탑 석인상의 조영시기와 훼손도 진단 및 보존관리)

  • Lee, Dong-sik;Lee, Yeon-gyeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.74-91
    • /
    • 2014
  • The stone statues in the site of Mireuksaji Temple(Iksan, South Korea) were created after the stone pagoda was built in 639. They, transitional statues between animal sculptures and human shaped statues made from the late Goryeo dynasty until the early Joseon dynasty, were set up at the four corners of the stone pagoda by way of guardians. In the case of three statues, their surfaces were denudated and their iconographies have been indiscernible. However, the one in the southwest clearly shows its iconography. It is inferior in properties to the other three statues in the northwest, the northeast and the southeast respectively, but on the other hand its iconography has been well maintained. The reason is related to exposure to harmful environments; specifically, the retaining wall, built around the stone pagoda in the 17th century, had the southwest statue inside and could naturally worked as a buffer against harmful environments. As a result, for about 400 years there has been difference in weathering conditions between the three stone statues and the southwest statue, which brought denudation, the consequent indiscernibleness of iconography and biological invasion to the three statues, notwithstanding superior properties(northwest statue:$176kgf/cm^2$, northeast statue:$109kgf/cm^2$, southeast statue:$273kgf/cm^2$). In contrast, the southwest statue significantly shows its iconography with black contaminants and granule decomposition, despite inferior properties($133kgf/cm^2$). Defenseless exposure to external environment is not recommended for the stone statues, because it is hard to preserve the extant iconography. Herein lies the application of the data on microclimate around Mireuksaji Temple. As regards the weathering zone in which the stone statues are located, Conservation increases in acidity and frequency as years go by, Hereat, in the approach to the Conservation of stone statues, the first consideration needs to be morphological historicity rather than geographical location.