• Title/Summary/Keyword: stomatal

Search Result 422, Processing Time 0.024 seconds

Effect of Elevated CO2 and Temperature on Growth, Yield and Physiological Responses of Major Rice Cultivars by Region in South Korea

  • Hae-Ran Kim;Young-Han You;Heon-Mo Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.341-351
    • /
    • 2022
  • The physiological characteristics, growth, and yield of each regional rice variety ('Odaebyeo', 'Saechucheong', 'Ilmibyeo') were investigated depending on the impact of changes in temperature and CO2 concentration. Experiments were conducted with a control group, which reflected atmospheric CO2 concentration and temperature, and treatment groups, in which the CO2 concentration and temperature were increased by 250 ppm and 2.0℃ from those in the control group. The results showed that the increase in CO2 concentration and temperature reduced the growth and yield of the rice 'Odaebyeo', but did not substantially change the productivity of the 'Saechucheong' and 'Ilmibyeo'. The increase in CO2 concentration and temperature increased stomatal conductance and rate of transpiration of the 'Odaebyeo' variety, thereby decreasing its water use efficiency (WUE). In contrast, the increase in CO2 concentration and temperature increased the photosynthetic rate and WUE of the 'Saechucheong' and 'Ilmibyeo' varieties. The gradual change in climate is considered to directly affect growth and development of rice and diversely affect the productivity of each variety. Therefore, it is necessary to implement technological development, select regionally optimal rice varieties, develop new rice varieties, as well as conduct long-term monitoring of each rice variety for climate adaptation to counter global warming.

Response of Growth and Development of Young Tomato Plants to End-of-day Monochromatic Light from Various LEDs

  • Khoshimkhujaev, Bekhzod;Kwon, Joon Kook;Lee, Jae Han;Choi, Hyo Gil;Park, Kyoung Sub;Kang, Nam Jun
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Plant growth and development strongly influenced by light quantity and its spectral composition. Young tomato plants were cultivated in growth cabinets under artificial light provided by red and blue light emitting diodes(LEDs) during 12 hours, then plants were exposed to monochromatic ultraviolet, blue, green and red lights as an end-of-day(EOD) treatment during 4 hours to study their effect on plant growth parameters. EOD lighting from various LEDs increased total fresh and dry weights as well as assimilation area compared to those in control. Blue light increased stem height, internode length and stem diameter. Monochromatic UV-A light reduced stem elongation, highly increased stomatal conductance. Compactness and health index of young tomato plants were increased in UV-A and red light treatments.

Short-range sensing for fruit tree water stress detection and monitoring in orchards: a review

  • Sumaiya Islam;Md Nasim Reza;Shahriar Ahmed;Md Shaha Nur Kabir;Sun-Ok Chung;Heetae Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.883-902
    • /
    • 2023
  • Water is critical to the health and productivity of fruit trees. Efficient monitoring of water stress is essential for optimizing irrigation practices and ensuring sustainable fruit production. Short-range sensing can be reliable, rapid, inexpensive, and used for applications based on well-developed and validated algorithms. This paper reviews the recent advancement in fruit tree water stress detection via short-range sensing, which can be used for irrigation scheduling in orchards. Thermal imagery, near-infrared, and shortwave infrared methods are widely used for crop water stress detection. This review also presents research demonstrating the efficacy of short-range sensing in detecting water stress indicators in different fruit tree species. These indicators include changes in leaf temperature, stomatal conductance, chlorophyll content, and canopy reflectance. Short-range sensing enables precision irrigation strategies by utilizing real-time data to customize water applications for individual fruit trees or specific orchard areas. This approach leads to benefits, such as water conservation, optimized resource utilization, and improved fruit quality and yield. Short-range sensing shows great promise for potentially changing water stress monitoring in fruit trees. It could become a useful tool for effective fruit tree water stress management through continued research and development.

Amelioration of non-irrigated stress and improvement of sweet pumpkin fruit quality by Kushneria konosiri endophytic bacteria

  • Sang Tae Kim;Mee Kyung Sang
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.539-549
    • /
    • 2023
  • This study examined the impact of two bacterial strains, H05E-12 and H05R-04, on alleviating non-irrigation-induced stress and its subsequent effects on the fruit productivity of sweet pumpkin plants. When subjected to non-irrigation-induced stress, the lipid peroxidation, proline, total phenol, and total soluble sugar content significantly decreased in plants treated with either H05E-12 or H05R-04 compared to the control. In a greenhouse experiment under non-irrigated conditions, H05E-12-treated plants exhibited higher stomatal conductance than the control, although there was no significant change in the soil plant analysis development(SPAD) value due to treatment. Upon re-watering, an increase in fruit diameter was observed in H05E-12-treated plants, and the L-ascorbic acid content in the fruit also showed a significant increase compared to the control. The H05E-12 strain was identified as Kushneria konosiri. To the best of our knowledge, this is the first report detailing the beneficial effects of K. konosiri on the alleviation of non-irrigation-induced stress and the promotion of plant growth in sweet pumpkin plants.

Role of Cloud Feedback in Continental Warming Response to CO2 Physiological Forcing

  • So-Won Park;Jong-Seong Kug;Sang-Yoon Jun;Su-Jong Jeong;Jin-Soo Kim
    • Journal of Climate Change Research
    • /
    • v.34 no.22
    • /
    • pp.8813-8828
    • /
    • 2021
  • Stomatal closure is a major physiological response to the increasing atmospheric carbon dioxide (CO2), which can lead to surface warming by regulating surface energy fluxes-a phenomenon known as CO2 physiological forcing. The magnitude of land surface warming caused by physiological forcing is substantial and varies across models. Here we assess the continental warming response to CO2 physiological forcing and quantify the resultant climate feedback using carbon-climate simulations from phases 5 and 6 of the Coupled Model Intercomparison Project, with a focus on identifying the cause of intermodel spread. It is demonstrated that the continental (40°-70°N) warming response to the physiological forcing in summer (~0.55 K) is amplified primarily due to cloud feedback (~1.05 K), whereas the other climate feedbacks, ranging from -0.57 to 0.20 K, show relatively minor contributions. In addition, the strength of cloud feedback varies considerably across models, which plays a primary role in leading large diversity of the continental warming response to the physiological forcing.

CHILLING SENSITIVITY OF CUCUMBER PLANTS MONITORED IN TERMS OF CHLOROPHYLL FLUORESCENCE

  • Kang, In-Soon;Moon, Byoung-Yong;Seo, Kye-Hong;Chun, Hyun-Sik;Lee, Chin-Bum
    • Journal of Photoscience
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 1996
  • For three cultivars of chilling-sensitive cucumber plants, chilling sensitivity was evaluated in terms of photosynthetic activity using Chl fluorescence techniques. Low-temperature treatment caused a decrease in photosynthetic activities of cucumber leaves, measured as CO$_2$ exchange, as well as the decrease in the stomatal conductance. FR of the three cultivars decreased after chilling for 24 h in light and the extent of decline of F$_R$ was the greatest in 'Chosaeng' cultivar. When these plants were recovered from light-chilling, 'Chosaeng' and 'Samchuk' cultivars did not fully restore the original value of F$_R$ after 24 h of recovery, in contrast to 'Ilmi' cultivar which showed a rather efficient recovery. The results of FR study showed that 'Chosaeng' was most susceptible, whereas Ilmi was most resistant, to chilling among the three cultivars of cucumber plants. When quenching coefficients for chlorophyll fluorescence was analyzed after chilling the cucumber plants for 24 h in light, 'Chosaeng' elicited more rapid declines in the coefficients for photochemical quenching (qQ), non-photochemical quenching (qNP) and energy-dependent quenching (qE) than 'Ilmi' and 'Samchuk'. The implications of these observations are discussed in relation to the growth habits of the respective cultivars in the field. The results showed that measurement of chlorophyll fluorescence was an effective means of screening chilling tolerance of cucumber plants. Furthermore, the study on the chlorophyll fluorescence induction and fluorescence quenching charactersitics showed that low temperature could accelerate inhibition of photosynthesis in chilling-sensitive plants, by limiting Calvin cycle activity and disrupting, in part, the energy dissipation mechanims of the photosystem II.

  • PDF

Molecular Approaches to Evaluate the Role of Some Genes Required for Plant Pathogenicity of Xanthomonas campestris pv. campestris (Xanthomonas campestris pv. campestris의 병원성 관련 형질 탐색에 관한 연구)

  • Bae, Dong-Won;Yun, Han-Dae;Kim, Hee-Kyu
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.172-178
    • /
    • 1997
  • Xanthmonas campestris pv. campestris, causal agent of Black rot of crucifers, were isolated and identified from crucifer host. In order to determine the characters of X. c. pv. campestris associated with pathogenicity, Tn5 mutagenesis was carried out by conjugating with E. coli pJB4J1. Transconjugants were plate- assayed for missing cellulase, protease and amylase activity. A cellulase negative mutant was selected and tested for pathogenicity. Light microscopy and Scanning electron microscopy revealed that substomatal tissues were colonized by mutant, but was far less extensive than those by wild type. Stomatal surface and substomatal tissue appeared to have degraded by only wild type in 24 hrs and progression of pathogenesis was distinct in 48 hrs. In 6 days, wild type proliferated well in the tissue facilitated by cellulase activity. As a result, cellulase was determined as the important factor in pathogenesis.

  • PDF

Application of Simple Biosphere Model (SiB2) to Ecological Research (Simple Biosphere Model 2 (SiB2)의 생태학적 응용)

  • 김원식;조재일
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.245-256
    • /
    • 2004
  • The simple biosphere model 2 (SiB2), which is one of the land surface models, simulates the exchange of momentum, energy and mass such as water vapor and carbon dioxide between atmosphere and biosphere, and includes the biochemical sub-model for representation of stomatal conductance and photosynthetical activities. Throughout the SiB2 simulation, the significant information not only to understand of water and carbon budget but also to make an analysis of interaction such as feed-back and-forward between environment and vegetation is given. Using revised SiB2-Paddy, one sample study which is the evaluation of the runoff in Chaophraya river basin according to land use/cover change is presented in this review. Hence, SiB2 is available in order to ecological studied, if revised SiB2 for realistic simulation about soil respiration, computing leaf area index, vegetation competition and soil moisture is improved.

Effects of Water Stress by PEG on Growth and Physiological Traits in Rice Seedlings

  • Choi, Weon-Young;Kang, Si-Yong;Park, Hong-Kyu;Kim, Sang-Su;Lee, Ki-Sang;Lee, Kyu-Seong;Shin, Hyun-Tak;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.112-117
    • /
    • 2000
  • This study was conducted to evaluate the drought tolerance of Japonica and Indica rice cultivars during germinating and seedling stages by using the polyethylene glycol (PEG) solution. Each 5 cultivars of Japonica and Indica were cultured from 14 days after seeding(DAS) to 21 DAS using the PEG solution in a moderate water potential (-0.63 MPa). The lengths of radicle and plumule during the germinating stage were inhibitied by the PEG treatment to about 50% and 85%, respectively. The application of PEG to the seedling of two rice types caused to inhibit the plant height and leaf age about 23 % and 10%, respectively. Shoot and root dry weights by PEG treatment were inhibited more severely in Japonica than those in Indica. The difference on delaying of leaf area expansion between both rice types was not found with treatment of PEG, while the leaf color was increased in both Japonica and Indica by 19.9% and 9.2%, respectively. The average photosynthetic ability was inhibited more in Japonica to 36.0% than did Indica to 27.9%. The stomatal conductance was severely affected by PEG treatment, and the degree was varied in both rice types, ranged with 80-85% in Japonica and 29.3-81.6% in Indica. These results indicate there is little relationship between seed germination and seedling growth under the stress of low water potential.

  • PDF

Effect of Changes of Leaf Water Content on Respiration and Photosynthetic Rate of Tobacco Varieties (엽중수분 변화가 잎담배 품종간 호흡과 광합성속도에 미치는 영향)

  • Seong-Kook Bae;Ryuichi, Ishii;Atsuhiko, Kumura
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.347-351
    • /
    • 1985
  • The effect of leaf water content on apparent photosynthesis and respiration of tobacco plants(five varieties) was studied under the condition without the irrigation for 10 days after the plants were sufficiently watered on the first day. The wild race (N. longiflora) among varieties showed highest apparent photosynthesis (AP) and AP had a positive correlation with specific leaf weight. N. longiflora and Andongyeob were different in their AP from the other varieties significantly under the water stress condition. Respiration rate also decreased to be simillar to AP except slight increase at early stage of water deficit. The stomatal resistance and the mesophyll resistance increased in the stressed plants. The water stress resistant character seems to be mainly due to open stomata.

  • PDF