• Title/Summary/Keyword: stoke

Search Result 160, Processing Time 0.021 seconds

An one equation method for two dimensional unsteady flows (2차원 비정상유동 해석을 위한 1-방정식 방법)

  • Cho Ji Ryong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.113-123
    • /
    • 1999
  • In this study a pure vector potential method (PVPM) for a three dimensional, unsteady, incompressible flow is proposed. A simplified version for a two dimensional problem is described in detail, and a method to prescribe appropriate boundary conditions is also presented. The resulting numerical algorithm is applied to the cavity flow driven by an impulsively started wall and also to the Stokes' first problem. Some important unsteady/steady features are captured for these two flows, and quantitative agreements of flow variables with available reference database are good.

  • PDF

Performance Evaluation of Railroad Bridge Foundation under Design Earthquake (철도교량 기초지반의 내진성능평가)

  • 황선근;이진욱;조성호;오상덕
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.165-170
    • /
    • 2002
  • At the present time, civil structure based of aseismatic design in the Korea began about 1997. However, most of the railway bridge constructed with block and block in the past can easily deteriorate with time due to the increase of repeated traffic loading, increase of train speed, etc. In this study, soil properties of the substructure of railway bridge with block and block was investigated through the SASW(spectral Analysis or Surface Waves) and RCTC test in the field and laboratories. Also, stabilization of liquefaction after occurred earthquake was investigated through the Seed & Idress method use of N value and Andrus and Stoke method use of S-Wave velocity.

  • PDF

Test of Stokes-Einstein Formula for a Tracer in a Mesoscopic Solvent by Molecular Dynamics Simulation

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.574-578
    • /
    • 2013
  • In this work, the friction and diffusion coefficients of a tracer in a mesoscopic solvent are evaluated as a function of the tracer size by a hybrid molecular dynamics simulation where solute molecules evolve by Newton's equations of motion but the solvent evolves through the multi-particle collision dynamics. The friction coefficient is shown to scale linearly with the tracer size for larger tracers in accord with predictions of hydrodynamic theories. The diffusion coefficient of tracer is found to be inversely proportional to tracer size. The behavior of Stokes-Einstein formula is validated as a function of tracer size.

Numerical Analysis of Unsteady Flow around a Transversely Oscillating Circular Cylinder

  • Moon, Ji-Soo;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • The relationship between the excitation frequency and the vortex shedding frequency is analyzed during the oscillation of the circular cylinder. Two-dimension unsteady Navier-Stoke's equation is calculated by using the Optimized High Order Compact (OHOC) scheme. The flow condition is Mach number 0.3 and Reynold's number 1000. From the results acquired by calculation, it can be inferred that, when the excitation frequency is near the vortex shedding frequency at the fixed cylinder wake, the oscillation frequency of lift and drag coefficients appears to lock-on. The lock-on refers to a phenomenon in which the aerodynamic coefficient appears as one primary oscillation frequency through excitation and its amplitude is amplified. In the non-lock-on zone, the excitation frequency is not in the lock-on mode anymore and beat is formed in which two or more primary oscillation frequencies of the aerodynamic coefficient are mixed together.

A Study on the Characteristics of Flow through a Valve using Exhaust System Engine Simulator (기관 배기계 모의실험장치를 이용한 밸브를 통과하는 유동특성에 관한 연구)

  • 차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.124-130
    • /
    • 1999
  • Flow characteristics of a compressible gas flow through a rotating disc-type rotary valve are investigated experimentally under various conditions. It is known that the mass flow rate through poppet valves of 4-stroke cycle engines and through piston valves of 2-stoke cycle engines decrease with increase in engine speed. Rotary valve is one means by which air may be made to flow inter-mittently through a pipe. In this paper an exhaust system simulator of engine was used to experi-mentally analyze the decrease in flow rate at high rotation speeds and to determine what variables other than rotational speed give rise to the observed behaviour. These variables have been included in an empirical equation which is representative of the measured flow characteristics.

  • PDF

Application of the Krylov Subspace Method to the Incompressible Navier-Stokes Equations (비압축성 Navier-Stokes 방정식에 대한 Krylov 부공간법의 적용)

  • Maeng, Joo-Sung;Choi, IL-Kon;Lim, Youn-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2000
  • The preconditioned Krylov subspace methods were applied to the incompressible Navier-Stoke's equations for convergence acceleration. Three of the Krylov subspace methods combined with the five of the preconditioners were tested to solve the lid-driven cavity flow problem. The MILU preconditioned CG method showed very fast and stable convergency. The combination of GMRES/MILU-CG solver for momentum and pressure correction equations was found less dependency on the number of the grid points among them. A guide line for stopping inner iterations for each equation is offered.

Reduction of the Cavity Flow Oscillations at Supersonic Speeds (초음속 공동유동에서의 진동감소)

  • Kang, Min-Sung;Shin, Choon-Sik;Kwon, Joon-Kyung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.345-348
    • /
    • 2008
  • The subcavity passive control technique is used in present study. Cavity-induced pressure oscillation has been investigated numerically for a supersonic three-dimensional flow over rectangular cavities at Mach number 1.83 at the cavity entrance. The three-dimensional, compressible Navier-stokes equations are numerically solved based on a fully implicit finite volume scheme. The results showed that the resultant amount of attenuation of cavity-induced pressure oscillations was dependent on the length and thickness of the flat plate.

  • PDF

EXACT SOLUTIONS OF GENERALIZED STOKES' PROBLEMS FOR AN INCOMPRESSIBLE COUPLE STRESS FLUID FLOWS

  • SIDDIQUE, IMRAN;UMBREEN, YOUSRA
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.507-519
    • /
    • 2019
  • The ground for this paper is to examine the generalized Stokes' first and second issues for an incompressible couple pressure liquid under isothermal conditions. Exact solutions for each problem are acquired by using the Laplace transform (LT) with respect to the time variable t and the sine Fourier transform (FT) with respect to the y-variable. Further, a comparison is given of the obtained results and the results of Devakar and Lyengar [1] and by using the four inverse Laplace transform algorithms (Stehfest's, Tzou's, Talbot, Fourier series) in the space time domain utilizing a numerical methodology. Moreover, velocity profiles are plotted and considered for various occasions and distinctive estimations of couple stress parameters. At the end, the outcomes are exhibited by graphs and in tabular forms.

Numerical Study of the Magnetohydrodynamic Heat Transfer Peristaltic Flow in Tube Against High Reynolds Number

  • Hamid, A.H.;Javed, Tariq;Ali, N.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1295-1302
    • /
    • 2018
  • In the present investigation, we have studied the magnetohydrodynamic (MHD) heat transfer of peristaltic flow in a tube. The analysis is made without imposing any assumption to obtain the streamline and isothermal line directly. Galerkin's finite element method has been used on the governing Navier-Stoke's equation in the form of ${\psi}-{\omega}$. The graphs of the computed longitudinal velocity, temperature and pressure are plotted against different value of the emerging parameter by using the stream function and vorticity. The results are valid beyond the long wavelength and the low Reynolds number limits. We conclude that higher values of the parameters are not independent of the time mean flow rate.

Analysis on Performance and Emission with Different Diesel Injection Methods in a Dual-Fuel Engine (디젤 분사방식에 따른 이종연료 엔진의 성능 및 배기 분석)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yonggyu;Jang, Hyungjoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.101-108
    • /
    • 2022
  • Performance and emissions with different diesel injection methods were analyzed in a natural gas-diesel, dual-fuel engine under low-load conditions. Natural gas was supplied to intake port during the intake stoke to form a natural gas-air premixed mixture for all methods. Diesel was injected directly into the cylinder during the compression stroke in three ways: early injections, late injections, and a combination of early and late injections. The early injections had the highest thermal efficiency among the three methods owing to its highest combustion efficiency. The wide dispersion of diesel before the combustion initiation also allowed superior emissions characteristics.