• Title/Summary/Keyword: stock price prediction

Search Result 154, Processing Time 0.025 seconds

A Prediction of Stock Price Movements Using Support Vector Machines in Indonesia

  • ARDYANTA, Ervandio Irzky;SARI, Hasrini
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.399-407
    • /
    • 2021
  • Stock movement is difficult to predict because it has dynamic characteristics and is influenced by many factors. Even so, there are some approaches to predict stock price movements, namely technical analysis, fundamental analysis, and sentiment analysis. Many researches have tried to predict stock price movement by utilizing these analysis techniques. However, the results obtained are varied and inconsistent depending on the variables and object used. This is because stock price movement is influenced by a variety of factors, and it is likely that those studies did not cover all of them. One of which is that no research considers the use of fundamental analysis in terms of currency exchange rates and the use of foreign stock price index movement related to the technical analysis. This research aims to predict stock price movements in Indonesia based on sentiment analysis, technical analysis, and fundamental analysis using Support Vector Machine. The result obtained has a prediction accuracy rate of 65,33% on an average. The inclusion of currency exchange rate and foreign stock price index movement as a predictor in this research which can increase average prediction accuracy rate by 11.78% compared to the prediction without using these two variables which only results in average prediction accuracy rate of 53.55%.

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

An Accurate Stock Price Forecasting with Ensemble Learning Based on Sentiment of News (뉴스 감성 앙상블 학습을 통한 주가 예측기의 성능 향상)

  • Kim, Ha-Eun;Park, Young-Wook;Yoo, Si-eun;Jeong, Seong-Woo;Yoo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Various studies have been conducted from the past to the present because stock price forecasts provide stability in the national economy and huge profits to investors. Recently, there have been many studies that suggest stock price prediction models using various input data such as macroeconomic indicators and emotional analysis. However, since each study was conducted individually, it is difficult to objectively compare each method, and studies on their impact on stock price prediction are still insufficient. In this paper, the effect of input data currently mainly used on the stock price is evaluated through the predicted value of the deep learning model and the error rate of the actual stock price. In addition, unlike most papers in emotional analysis, emotional analysis using the news body was conducted, and a method of supplementing the results of each emotional analysis is proposed through three emotional analysis models. Through experiments predicting Microsoft's revised closing price, the results of emotional analysis were found to be the most important factor in stock price prediction. Especially, when all of input data is used, error rate of ensembled sentiment analysis model is reduced by 58% compared to the baseline.

A Prediction of Stock Price Through the Big-data Analysis (인터넷 뉴스 빅데이터를 활용한 기업 주가지수 예측)

  • Yu, Ji Don;Lee, Ik Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.154-161
    • /
    • 2018
  • This study conducted to predict the stock market prices based on the assumption that internet news articles might have an impact and effect on the rise and fall of stock market prices. The internet news articles were tested to evaluate the accuracy by comparing predicted values of the actual stock index and the forecasting models of the companies. This paper collected stock news from the internet, and analyzed and identified the relationship with the stock price index. Since the internet news contents consist mainly of unstructured texts, this study used text mining technique and multiple regression analysis technique to analyze news articles. A company H as a representative automobile manufacturing company was selected, and prediction models for the stock price index of company H was presented. Thus two prediction models for forecasting the upturn and decline of H stock index is derived and presented. Among the two prediction models, the error value of the prediction model (1) is low, and so the prediction performance of the model (1) is relatively better than that of the prediction model (2). As the further research, if the contents of this study are supplemented by real artificial intelligent investment decision system and applied to real investment, more practical research results will be able to be developed.

Development of a Continuous Prediction System of Stock Price Based on HTM Network (HTM 기반의 주식가격 연속 예측 시스템 개발)

  • Seo, Dae-Ho;Bae, Sun-Gap;Kim, Sung-Jin;Kang, Hyun-Syug;Bae, Jong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1152-1164
    • /
    • 2011
  • Stock price is stream data to change continuously. The characteristics of these data, stock trends according to flow of time intervals may differ. therefore, stock price should be continuously prediction when the price is updated. In this paper, we propose the new prediction system that continuously predicts the stock price according to the predefined time intervals for the selected stock item using HTM model. We first present a preprocessor which normalizes the stock data and passes its result to the stream sensor. We next present a stream sensor which efficiently processes the continuous input. In addition, we devise a storage node which stores the prediction results for each level and passes it to next upper level and present the HTM network for prediction using these nodes. We show experimented our system using the actual stock price and shows its performance.

Stock Price Prediction Based on Time Series Network (시계열 네트워크에 기반한 주가예측)

  • Park, Kang-Hee;Shin, Hyun-Jung
    • Korean Management Science Review
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • Time series analysis methods have been traditionally used in stock price prediction. However, most of the existing methods represent some methodological limitations in reflecting influence from external factors that affect the fluctuation of stock prices, such as oil prices, exchange rates, money interest rates, and the stock price indexes of other countries. To overcome the limitations, we propose a network based method incorporating the relations between the individual company stock prices and the external factors by using a graph-based semi-supervised learning algorithm. For verifying the significance of the proposed method, it was applied to the prediction problems of company stock prices listed in the KOSPI from January 2007 to August 2008.

Developing Stock Pattern Searching System using Sequence Alignment Algorithm (서열 정렬 알고리즘을 이용한 주가 패턴 탐색 시스템 개발)

  • Kim, Hyong-Jun;Cho, Hwan-Gue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.6
    • /
    • pp.354-367
    • /
    • 2010
  • There are many methods for analyzing patterns in time series data. Although stock data represents a time series, there are few studies on stock pattern analysis and prediction. Since people believe that stock price changes randomly we cannot predict stock prices using a scientific method. In this paper, we measured the degree of the randomness of stock prices using Kolmogorov complexity, and we showed that there is a strong correlation between the degree and the accuracy of stock price prediction using our semi-global alignment method. We transformed the stock price data to quantized string sequences. Then we measured randomness of stock prices using Kolmogorov complexity of the string sequences. We use KOSPI 690 stock data during 28 years for our experiments and to evaluate our methodology. When a high Kolmogorov complexity, the stock price cannot be predicted, when a low complexity, the stock price can be predicted, but the prediction ratio of stock price changes of interest to investors, is 12% prediction ratio for short-term predictions and a 54% prediction ratio for long-term predictions.

Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network (양방향 LSTM 순환신경망 기반 주가예측모델)

  • Joo, Il-Taeck;Choi, Seung-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.204-208
    • /
    • 2018
  • In this paper, we proposed and evaluated the time series deep learning prediction model for learning fluctuation pattern of stock price. Recurrent neural networks, which can store previous information in the hidden layer, are suitable for the stock price prediction model, which is time series data. In order to maintain the long - term dependency by solving the gradient vanish problem in the recurrent neural network, we use LSTM with small memory inside the recurrent neural network. Furthermore, we proposed the stock price prediction model using bidirectional LSTM recurrent neural network in which the hidden layer is added in the reverse direction of the data flow for solving the limitation of the tendency of learning only based on the immediately preceding pattern of the recurrent neural network. In this experiment, we used the Tensorflow to learn the proposed stock price prediction model with stock price and trading volume input. In order to evaluate the performance of the stock price prediction, the mean square root error between the real stock price and the predicted stock price was obtained. As a result, the stock price prediction model using bidirectional LSTM recurrent neural network has improved prediction accuracy compared with unidirectional LSTM recurrent neural network.

A Smoothing Method for Stock Price Prediction with Hidden Markov Models

  • Lee, Soon-Ho;Oh, Chang-Hyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.945-953
    • /
    • 2007
  • In this paper, we propose a smoothing and thus noise-reducing method of data sequences for stock price prediction with hidden Markov models, HMMs. The suggested method just uses simple moving average. A proper average size is obtained from forecasting experiments with stock prices of bank sector of Korean Exchange. Forecasting method with HMM and moving average smoothing is compared with a conventional method.

  • PDF

Stock Trading Model using Portfolio Optimization and Forecasting Stock Price Movement (포트폴리오 최적화와 주가예측을 이용한 투자 모형)

  • Park, Kanghee;Shin, Hyunjung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.535-545
    • /
    • 2013
  • The goal of stock investment is earning high rate or return with stability. To accomplish this goal, using a portfolio that distributes stocks with high rate of return with less variability and a stock price prediction model with high accuracy is required. In this paper, three methods are suggested to require these conditions. First of all, in portfolio re-balance part, Max-Return and Min-Risk (MRMR) model is suggested to earn the largest rate of return with stability. Secondly, Entering/Leaving Rule (E/L) is suggested to upgrade portfolio when particular stock's rate of return is low. Finally, to use outstanding stock price prediction model, a model based on Semi-Supervised Learning (SSL) which was suggested in last research was applied. The suggested methods were validated and applied on stocks which are listed in KOSPI200 from January 2007 to August 2008.