• Title/Summary/Keyword: stock price model

Search Result 348, Processing Time 0.028 seconds

Estimation of Volatility of Korea Stock Price Index Using Winbugs (Winbugs를 이용한 우리나라 주가지수의 변동성에 대한 추정)

  • Kim, Hyoung Min;Chang, In Hong;Lee, Seung Woo
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.121-129
    • /
    • 2011
  • The purpose of this paper is to estimate the fluctuation of an earning rate and risk management using the price index of Korea stocks. After an observation of conception of fluctuation, we can show volatility clustering and fluctuation phenomenon in the Korea stock price index using GARCH model with heteroscedasticity. In addition, the effects of fluctuation on the time-series was evaluated, which showed the heteroscedasticity. MCMC method and Winbugs as Bayesian computation were used for analysis.

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.

Quantitative Causal Reasoning in Stock Price Index Prediction Model

  • Kim, Myoung-Joon;Ingoo Han
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.228-231
    • /
    • 1998
  • Artificial Intelligence literatures have recognized that stock market is a highly unstructured and complex domain so that it is difficult to find knowledge that belongs to that domain. This paper demonstrates that the proposed QCOM can derive global knowledge about stock market on the basis of a set of local knowledge and express it as a digraph representation. In addition, inference mechanism using quantitative causal reasoning can describe the qualitative and quantitative effects of exogenous variables on stock market.

  • PDF

An Analysis of the Effects of WTI on Korean Stock Market Using HAR Model (국내 주식시장 변동성에 대한 국제유가의 영향: 이질적 자기회귀(HAR) 모형을 사용하여)

  • Kim, Hyung-Gun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.535-555
    • /
    • 2021
  • This study empirically analyzes the effects of international oil prices on domestic stock market volatility. The data used for the analysis are 10-minute high-frequency data of the KOSPI index and WTI futures price from January 2, 2015, to July 30, 2021. For using the high-frequency data, a heterogeneous autoregression (HAR) model is employed. The analysis model utilizes the advantages of high frequency data to observe the impact of international oil prices through realized volatility, realized skewness, and kurtosis as well as oil price return. In the estimation, the Box-Cox transformation is applied in consideration of the distribution of realized volatility with high skewness. As a result, it finds that the daily return fluctuation of the WTI price has a statistically significant positive (+) effect on the volatility of the KOSPI return. However, the volatility, skewness, and kurtosis of the WTI return do not appear to affect the volatility of the KOSPI return. This result is believed to be because the volatility of the KOSPI return reflects the daily change in the WTI return, but does not reflect the intraday trading behavior of investors.

Online news-based stock price forecasting considering homogeneity in the industrial sector (산업군 내 동질성을 고려한 온라인 뉴스 기반 주가예측)

  • Seong, Nohyoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.1-19
    • /
    • 2018
  • Since stock movements forecasting is an important issue both academically and practically, studies related to stock price prediction have been actively conducted. The stock price forecasting research is classified into structured data and unstructured data, and it is divided into technical analysis, fundamental analysis and media effect analysis in detail. In the big data era, research on stock price prediction combining big data is actively underway. Based on a large number of data, stock prediction research mainly focuses on machine learning techniques. Especially, research methods that combine the effects of media are attracting attention recently, among which researches that analyze online news and utilize online news to forecast stock prices are becoming main. Previous studies predicting stock prices through online news are mostly sentiment analysis of news, making different corpus for each company, and making a dictionary that predicts stock prices by recording responses according to the past stock price. Therefore, existing studies have examined the impact of online news on individual companies. For example, stock movements of Samsung Electronics are predicted with only online news of Samsung Electronics. In addition, a method of considering influences among highly relevant companies has also been studied recently. For example, stock movements of Samsung Electronics are predicted with news of Samsung Electronics and a highly related company like LG Electronics.These previous studies examine the effects of news of industrial sector with homogeneity on the individual company. In the previous studies, homogeneous industries are classified according to the Global Industrial Classification Standard. In other words, the existing studies were analyzed under the assumption that industries divided into Global Industrial Classification Standard have homogeneity. However, existing studies have limitations in that they do not take into account influential companies with high relevance or reflect the existence of heterogeneity within the same Global Industrial Classification Standard sectors. As a result of our examining the various sectors, it can be seen that there are sectors that show the industrial sectors are not a homogeneous group. To overcome these limitations of existing studies that do not reflect heterogeneity, our study suggests a methodology that reflects the heterogeneous effects of the industrial sector that affect the stock price by applying k-means clustering. Multiple Kernel Learning is mainly used to integrate data with various characteristics. Multiple Kernel Learning has several kernels, each of which receives and predicts different data. To incorporate effects of target firm and its relevant firms simultaneously, we used Multiple Kernel Learning. Each kernel was assigned to predict stock prices with variables of financial news of the industrial group divided by the target firm, K-means cluster analysis. In order to prove that the suggested methodology is appropriate, experiments were conducted through three years of online news and stock prices. The results of this study are as follows. (1) We confirmed that the information of the industrial sectors related to target company also contains meaningful information to predict stock movements of target company and confirmed that machine learning algorithm has better predictive power when considering the news of the relevant companies and target company's news together. (2) It is important to predict stock movements with varying number of clusters according to the level of homogeneity in the industrial sector. In other words, when stock prices are homogeneous in industrial sectors, it is important to use relational effect at the level of industry group without analyzing clusters or to use it in small number of clusters. When the stock price is heterogeneous in industry group, it is important to cluster them into groups. This study has a contribution that we testified firms classified as Global Industrial Classification Standard have heterogeneity and suggested it is necessary to define the relevance through machine learning and statistical analysis methodology rather than simply defining it in the Global Industrial Classification Standard. It has also contribution that we proved the efficiency of the prediction model reflecting heterogeneity.

Stock Selection Model in the Formation of an Optimal and Adaptable Portfolio in the Indonesian Capital Market

  • SETIADI, Hendri;ACHSANI, Noer Azam;MANURUNG, Adler Haymans;IRAWAN, Tony
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.9
    • /
    • pp.351-360
    • /
    • 2022
  • This study aims to determine the factors that can influence investors in selecting stocks in the Indonesian capital market to establish an optimal portfolio, and find phenomena that occurred during the COVID-19 pandemic so that buying interest / the number of investors increased in the Indonesian capital market. This study collection technique uses primary data obtained from the survey questionnaire and secondary data which is market data, stock price movement data sourced from the Indonesia Stock Exchange, Indonesian Central Securities Depository, and Bank Indonesia, as well as empirical literature on behavior finance, investment decision, and interest in buying stock. The method used in this research is the survey questionnaire analysis with the SEM (statistical approach). The results of the analysis using SEM show that investor behavior influences the stock-buying interest, investor behavior, and the stock-buying interest influences investor decision-making. However, risk management does not influence investor-decision making. This occurs when the investigator's psychological capacity produces more decision information by decreasing all potential biases, allowing the best stock selection model to be selected. When the investigator's psychological capacity creates more decision information by reducing biases, the optimum stock selection model can be chosen.

Estimation of the Optimal Harvest and Stock Assessment of Hairtail Caught by Multiple Fisheries (다수어업의 갈치 자원평가 및 최적어획량 추정)

  • Nam, Jongoh;Cho, Hoonseok
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.237-247
    • /
    • 2018
  • This study aims to estimate optimal harvests, fishing efforts, and stock levels of hairtail harvested by the large pair bottom trawl, the large otter trawl, the large purse seine, the offshore long line, and the offshore angling fisheries by using the surplus production models and the current value Hamiltonian method. Processes of this study are as follows. First of all, this study estimates the standardized fishing efforts regarding the harvesting of the hairtail by the above five fishing gears based on the general linear model developed by Gavaris. Secondly, this study estimates environmental carrying capacity (k), intrinsic growth rate (r), and catchability coefficient (q) by applying the Clarke Yoshimoto Pooley (CY&P) model among various surplus production models. Thirdly, this study estimates the optimal harvests, fishing efforts, and stock levels regarding the hairtail by the current value Hamiltonian method, including the average landing price, the average unit cost, and the social discount rate. Finally, this study attempts a sensitivity analysis to figure out changes in optimal harvests, fishing efforts, and stock levels due to changes in the average landing price and the average unit cost. As results induced by the current value Hamiltonian method, the optimal harvests, fishing efforts, and stock levels regarding the hairtail caught by several fishing gears were estimated as 33,133 tons, 901,080 horse power, and 79,877 tons, respectively. In addition, from the results of the sensitivity analysis, first of all, if the average landing price of the hairtail constantly increases, the optimal harvests of it increase at a decreasing rate, and then harvests finally slightly decrease as a result of decreases in stock levels. Secondly, if the average unit cost of fishing efforts continuously increases, the optimal fishing efforts decreases, but optimal stock levels increase. Optimal harvests start climbing and then decrease continuously due to increases in the average unit cost. In summary, this study suggests that the optimal harvests (33,133 tons) were larger than actual harvests (25,133 tons), but the optimal fishing efforts (901,080 horse power) were much less than estimated standardized fishing efforts (1,277,284 horse power), corresponding to the average of the recent three years (2014-2016). This result implies that the hairtail has been inefficiently harvested and recently overfished due to excessive fishing efforts. Efficient management and conservation policies on stock levels need to be urgently implemented. Some appropriate strategies would be to include the hairtail in the Korean TAC species or to extend the closed fishing season for this species.

The Impact of Asian Economic Policy Uncertainty : Evidence from Korean Housing Market

  • Jeon, Ji-Hong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.2
    • /
    • pp.43-51
    • /
    • 2018
  • We study the impact of economic policy uncertainty (EPU) of Asian four countries such as Korea, Japan, Hong Kong, and China on housing market returns in Korea. Also, we document the relationship between the EPU index of those four countries and the housing market including macroeconomic indicators in Korea. The EPU index of those four countries has significantly a negative effect on the housing purchase price index, housing lease price index in Korea. The EPU index in Korea and Japan has significantly a negative effect on the CPI. The EPU index in only Japan has significantly a negative effect on the PPI. The EPU index in Hong Kong and Korea has significantly a negative effect but the EPU index in China significantly has a positive effect on the stock price index in construction industry. The EPU index in only Korea has significantly a negative effect the stock price index in banking industry. This study shows the EPU index of the Korea has the negative relationships on the housing market economy rather than other countries by VECM. And this study has an important evidence of the spillover of several macroeconomic indicators in Korea for the EPU index of the Asian four countries.

The effect of earnings volatility on current stock price informativeness about expectations of future earnings (이익 변동성이 현재 주가의 미래 이익 기대에 대한 정보성에 미치는 영향: 미국기업을 중심으로)

  • Joong-Seok Cho
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.4
    • /
    • pp.109-121
    • /
    • 2022
  • Purpose - This study investigates how earnings volatility influences current stock price informativeness about expectations of future earnings. Design/methodology/approach - I adopt the FERC model developed by Collins et al. (1994) and modified by Lundholm and Myers (2002) to investigate the connection between earnings volatility and future earnings reflected in current returns. I define five-year rolling standard deviations of earnings and components as earnings volatility measures and the degree of deviation of earnings from cash flows over the same five-year, which is developed by Jayaraman (2008). Finding - My results show that earnings volatility delays current stock price response to future operation expectations. They also verify that as earnings are more divergent from cash flows, current returns are less timely incorporating value-relevant future operation. Research implications or Originality This study shows that when volatile earnings deliver obscure and unreliable information about future operation expectations, they cause the market to be conflicting in understandings their implications and make it difficult in attaining correct future cashflow estimates.

Information Flow Effect Between the Stock Market and Bond Market (주식시장과 채권시장간의 정보 이전효과)

  • Choi, Cha-Soon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • This paper investigated the information spillover effect between stock market and bond market with the KOSPI daily index and MMF yield data. The overall analysis period is from May 2, 1997 to August 30, 2019. The empirical analysis was conducted by dividing the period from May 2, 1997 to December 30, 2008 before the global financial crisis, and from December 30, 2008 to August 30, 2019 after the global financial crisis, and the overall analysis period. The analysis shows that the EGARCH model considering asymmetric variability is suitable. The price spillover effect and volatility spillover effect existed in both directions between the stock market and the bond market, and the price transfer effect was greater in the period before the global financial crisis than in the period after the global financial crisis. Asymmetric volatility in information between stock and bond markets appears to exist in both markets.