• Title/Summary/Keyword: stock data

Search Result 1,658, Processing Time 0.027 seconds

A study on stock price prediction system based on text mining method using LSTM and stock market news (LSTM과 증시 뉴스를 활용한 텍스트 마이닝 기법 기반 주가 예측시스템 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.223-228
    • /
    • 2020
  • The stock price reflects people's psychology, and factors affecting the entire stock market include economic growth rate, economic rate, interest rate, trade balance, exchange rate, and currency. The domestic stock market is heavily influenced by the stock index of the United States and neighboring countries on the previous day, and the representative stock indexes are the Dow index, NASDAQ, and S & P500. Recently, research on stock price analysis using stock news has been actively conducted, and research is underway to predict the future based on past time series data through artificial intelligence-based analysis. However, even if the stock market is hit for a short period of time by the forecasting system, the market will no longer move according to the short-term strategy, and it will have to change anew. Therefore, this model monitored Samsung Electronics' stock data and news information through text mining, and presented a predictable model by showing the analyzed results.

Online news-based stock price forecasting considering homogeneity in the industrial sector (산업군 내 동질성을 고려한 온라인 뉴스 기반 주가예측)

  • Seong, Nohyoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.1-19
    • /
    • 2018
  • Since stock movements forecasting is an important issue both academically and practically, studies related to stock price prediction have been actively conducted. The stock price forecasting research is classified into structured data and unstructured data, and it is divided into technical analysis, fundamental analysis and media effect analysis in detail. In the big data era, research on stock price prediction combining big data is actively underway. Based on a large number of data, stock prediction research mainly focuses on machine learning techniques. Especially, research methods that combine the effects of media are attracting attention recently, among which researches that analyze online news and utilize online news to forecast stock prices are becoming main. Previous studies predicting stock prices through online news are mostly sentiment analysis of news, making different corpus for each company, and making a dictionary that predicts stock prices by recording responses according to the past stock price. Therefore, existing studies have examined the impact of online news on individual companies. For example, stock movements of Samsung Electronics are predicted with only online news of Samsung Electronics. In addition, a method of considering influences among highly relevant companies has also been studied recently. For example, stock movements of Samsung Electronics are predicted with news of Samsung Electronics and a highly related company like LG Electronics.These previous studies examine the effects of news of industrial sector with homogeneity on the individual company. In the previous studies, homogeneous industries are classified according to the Global Industrial Classification Standard. In other words, the existing studies were analyzed under the assumption that industries divided into Global Industrial Classification Standard have homogeneity. However, existing studies have limitations in that they do not take into account influential companies with high relevance or reflect the existence of heterogeneity within the same Global Industrial Classification Standard sectors. As a result of our examining the various sectors, it can be seen that there are sectors that show the industrial sectors are not a homogeneous group. To overcome these limitations of existing studies that do not reflect heterogeneity, our study suggests a methodology that reflects the heterogeneous effects of the industrial sector that affect the stock price by applying k-means clustering. Multiple Kernel Learning is mainly used to integrate data with various characteristics. Multiple Kernel Learning has several kernels, each of which receives and predicts different data. To incorporate effects of target firm and its relevant firms simultaneously, we used Multiple Kernel Learning. Each kernel was assigned to predict stock prices with variables of financial news of the industrial group divided by the target firm, K-means cluster analysis. In order to prove that the suggested methodology is appropriate, experiments were conducted through three years of online news and stock prices. The results of this study are as follows. (1) We confirmed that the information of the industrial sectors related to target company also contains meaningful information to predict stock movements of target company and confirmed that machine learning algorithm has better predictive power when considering the news of the relevant companies and target company's news together. (2) It is important to predict stock movements with varying number of clusters according to the level of homogeneity in the industrial sector. In other words, when stock prices are homogeneous in industrial sectors, it is important to use relational effect at the level of industry group without analyzing clusters or to use it in small number of clusters. When the stock price is heterogeneous in industry group, it is important to cluster them into groups. This study has a contribution that we testified firms classified as Global Industrial Classification Standard have heterogeneity and suggested it is necessary to define the relevance through machine learning and statistical analysis methodology rather than simply defining it in the Global Industrial Classification Standard. It has also contribution that we proved the efficiency of the prediction model reflecting heterogeneity.

The First Passage Time of Stock Price under Stochastic Volatility

  • Nguyen, Andrew Loc
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.879-889
    • /
    • 2004
  • This paper gives an approximation to the distribution function of the .rst passage time of stock price when volatility of stock price is modeled by a function of Ornstein-Uhlenbeck process. It also shows how to obtain the error of the approximation.

  • PDF

A Study on Determining the Prediction Models for Predicting Stock Price Movement (주가 운동양태 예측을 위한 예측 모델결정에 관한 연구)

  • Jeon Jin-Ho;Cho Young-Hee;Lee Gye-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.6
    • /
    • pp.26-32
    • /
    • 2006
  • Predictions on stock prices have been a hot issue in stock market as people get more interested in stock investments. Assuming that the stock price is moving by a trend in a specific pattern, we believe that a model can be derived from past data to describe the change of the price. The best model can help predict the future stock price. In this paper, our model derivation is based on automata over temporal data to which the model is explicable. We use Bayesian Information Criterion(BIC) to determine the best number of states of the model. We confirm the validity of Bayesian Information Criterion and apply it to building models over stock price indices. The model derived for predicting daily stock price are compared with real price. The comparisons show the predictions have been found to be successful over the data sets we chose.

  • PDF

A study on Deep Learning-based Stock Price Prediction using News Sentiment Analysis

  • Kang, Doo-Won;Yoo, So-Yeop;Lee, Ha-Young;Jeong, Ok-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.31-39
    • /
    • 2022
  • Stock prices are influenced by a number of external factors, such as laws and trends, as well as number-based internal factors such as trading volume and closing prices. Since many factors affect stock prices, it is very difficult to accurately predict stock prices using only fragmentary stock data. In particular, since the value of a company is greatly affected by the perception of people who actually trade stocks, emotional information about a specific company is considered an important factor. In this paper, we propose a deep learning-based stock price prediction model using sentiment analysis with news data considering temporal characteristics. Stock and news data, two heterogeneous data with different characteristics, are integrated according to time scale and used as input to the model, and the effect of time scale and sentiment index on stock price prediction is finally compared and analyzed. Also, we verify that the accuracy of the proposed model is improved through comparative experiments with existing models.

The Effects of Profitability and Solvability on Stock Prices: Empirical Evidence from Indonesia

  • SHOLICHAH, Fatmawati;ASFIAH, Nurul;AMBARWATI, Titiek;WIDAGDO, Bambang;ULFA, Mutia;JIHADI, M.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.885-894
    • /
    • 2021
  • This study aims to analyze the effect of the ratio of profitability and solvability (leverage) on the variable stock price, which is mediated (intervening) by the variable dividend policy. Using the financial reports of manufacturing companies in the consumer goods sector, we take profitability data (ROA, ROE, GPM, and NPM), solvability data (DAR, LTDER, and DER), dividend policy (DPR), and stock price (closing price) from 24 companies, which were selected as samples, from 2011 to 2018. Data was analyzed using the Structural Equation Modeling (SEM) method. The results show that profitability, solvability, and dividend policy affect changes in stock prices, respectively. On the other hand, profitability and solvability do not affect dividend policy. The indirect relationship (intervening) is assessed using a single test, resulting in a dividend policy that can intervene in the relationship between profitability and stock prices but cannot mediate the relationship between solvability and stock prices. The implication of this research is to provide knowledge to investors about the importance of knowing the company's financial performance. Companies with good financial performance will easily develop because there are sufficient funds for company operations. By analyzing financial ratios, investors can get signals to decide whether to invest in the company they want.

Empirical Analysis on Profit and Stability of Korean Reverse Convertible Funds

  • Shin, Yang-Gyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1073-1080
    • /
    • 2008
  • Reverse convertible fund is a method of investment assuring both profit and stability in an unstable stock market, and shares characteristics of a hedge fund and derivative securities. This study analyzes empirically whether reverse convertible funds can indeed serve as a new method in variable stock market environment to provide high profit with low risks especially in the Korean stock market.

  • PDF

Tests of a Four-Factor Asset Pricing Model: The Stock Exchange of Thailand

  • POJANAVATEE, Sasipa
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.117-123
    • /
    • 2020
  • The objective of this study is to examine whether the four-factor model explains variation in the expected return of stocks on the Stock Exchange of Thailand. The study used individual monthly data for all stock with continuous trading on the Stock Exchange of Thailand. The study used sample data of 429 listed stocks to construct 8 portfolios bases on the industries. In this study, subject to market factors such as size, the book-to-market ratio, the market beta, and stock liquidity are taken into account. The Empirical analysis reveals that not all of the variables included in the four-factor asset pricing model are statistically significant to do affect the formation of the rate of return on stocks calculated on a monthly basis. The result shows that market beta, stock liquidity, and the book-to-market ratio has a significant increase in the rate of return on shares listed on the Consumer Products. It is therefore apparent that at least in respect of monthly analysis, the predictions of bass models in the field of modern finance theory systematic risk measured by the beta coefficient did play a significantly important role in the formation of the rate of return on the Stock Exchange of Thailand.

Stock Price Co-movement and Firm's Ownership Structure in Emerging Market

  • VU, Thu Minh Thi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.107-115
    • /
    • 2020
  • This study is concerned with the relationship between firm's ownership structure and the co-movement of the stock return with the market return. Four different types of firm ownership, including managerial ownership, state ownership, foreign ownership, and concentrated ownership, are among the main features of the company's governance mechanism and have been separately documemented in the previous research to understand their impact on stock price synchronicity. We constructed the regression model, using stock price synchronicity as the dependent variable and the above four components of ownership structure as explanantory variables. The pooled OLS, the fixed effects model, and the random effects are employed to investigate the outcome of the study. Data used in the reserch are of public firms listed on the Ho Chi Minh City Stock Exchange (HOSE) during the five-year period term from 2015 to 2019. The data sample contains 235 companies from 10 industries with 1135 observations. The results revealed by the fixed effects model, the large ownership and the managerial ownership are found to have adverse effect on the stock price synchronicity, whereas the foreign ownership model is revealed to have positive influence on the stock return co-movement. The effect of the state ownership on the stock price synchronicity is not confirmed.

A Prediction of Stock Price Through the Big-data Analysis (인터넷 뉴스 빅데이터를 활용한 기업 주가지수 예측)

  • Yu, Ji Don;Lee, Ik Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.154-161
    • /
    • 2018
  • This study conducted to predict the stock market prices based on the assumption that internet news articles might have an impact and effect on the rise and fall of stock market prices. The internet news articles were tested to evaluate the accuracy by comparing predicted values of the actual stock index and the forecasting models of the companies. This paper collected stock news from the internet, and analyzed and identified the relationship with the stock price index. Since the internet news contents consist mainly of unstructured texts, this study used text mining technique and multiple regression analysis technique to analyze news articles. A company H as a representative automobile manufacturing company was selected, and prediction models for the stock price index of company H was presented. Thus two prediction models for forecasting the upturn and decline of H stock index is derived and presented. Among the two prediction models, the error value of the prediction model (1) is low, and so the prediction performance of the model (1) is relatively better than that of the prediction model (2). As the further research, if the contents of this study are supplemented by real artificial intelligent investment decision system and applied to real investment, more practical research results will be able to be developed.