• Title/Summary/Keyword: stochastic volatility

Search Result 68, Processing Time 0.023 seconds

Uniform Ergodicity and Exponential α-Mixing for Continuous Time Stochastic Volatility Model

  • Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • A continuous time stochastic volatility model for financial assets suggested by Barndorff-Nielsen and Shephard (2001) is considered, where the volatility process is modelled as an Ornstein-Uhlenbeck type process driven by a general L$\'{e}$vy process and the price process is then obtained by using an independent Brownian motion as the driving noise. The uniform ergodicity of the volatility process and exponential ${\alpha}$-mixing properties of the log price processes of given continuous time stochastic volatility models are obtained.

OPTIMAL PORTFOLIO SELECTION UNDER STOCHASTIC VOLATILITY AND STOCHASTIC INTEREST RATES

  • KIM, MI-HYUN;KIM, JEONG-HOON;YOON, JI-HUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.417-428
    • /
    • 2015
  • Although, in general, the random fluctuation of interest rates gives a limited impact on portfolio optimization, their stochastic nature may exert a significant influence on the process of selecting the proportions of various assets to be held in a given portfolio when the stochastic volatility of risky assets is considered. The stochastic volatility covers a variety of known models to fit in with diverse economic environments. In this paper, an optimal strategy for portfolio selection as well as the smoothness properties of the relevant value function are studied with the dynamic programming method under a market model of both stochastic volatility and stochastic interest rates.

Comparison of the Korean and US Stock Markets Using Continuous-time Stochastic Volatility Models

  • CHOI, SEUNGMOON
    • KDI Journal of Economic Policy
    • /
    • v.40 no.4
    • /
    • pp.1-22
    • /
    • 2018
  • We estimate three continuous-time stochastic volatility models following the approach by Aït-Sahalia and Kimmel (2007) to compare the Korean and US stock markets. To do this, the Heston, GARCH, and CEV models are applied to the KOSPI 200 and S&P 500 Index. For the latent volatility variable, we generate and use the integrated volatility proxy using the implied volatility of short-dated at-the-money option prices. We conduct MLE in order to estimate the parameters of the stochastic volatility models. To do this we need the transition probability density function (TPDF), but the true TPDF is not available for any of the models in this paper. Therefore, the TPDFs are approximated using the irreducible method introduced in Aït-Sahalia (2008). Among three stochastic volatility models, the Heston model and the CEV model are found to be best for the Korean and US stock markets, respectively. There exist relatively strong leverage effects in both countries. Despite the fact that the long-run mean level of the integrated volatility proxy (IV) was not statistically significant in either market, the speeds of the mean reversion parameters are statistically significant and meaningful in both markets. The IV is found to return to its long-run mean value more rapidly in Korea than in the US. All parameters related to the volatility function of the IV are statistically significant. Although the volatility of the IV is more elastic in the US stock market, the volatility itself is greater in Korea than in the US over the range of the observed IV.

IGARCH 모형과 Stochastic Volatility 모형의 비교

  • Hwang, S.Y.;Park, J.A.
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.151-152
    • /
    • 2005
  • IGARCH and Stochastic Volatility Model(SVM, for short) have frequently provided useful approximations to the real aspects of financial time series. This article is concerned with modeling various Korean financial time series using both IGARCH and Stochastic Volatility Models. Daily data sets with sample period ranging from 2000 and 2004 including KOSPI, KOSDAQ and won-dollar exchange rate are comparatively analyzed using IGARCH and SVM.

  • PDF

IGARCH and Stochastic Volatility : Case Study

  • Hwang, S.Y.;Park, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.835-841
    • /
    • 2005
  • IGARCH and Stochastic Volatility Model(SVM, for short) have frequently provided useful approximations to the real aspects of financial time series. This article is concerned with modeling various Korean financial time series using both IGARCH and stochastic volatility models. Daily data sets with sample period ranging from 2000 and 2004 including KOSPI, KOSDAQ and won-dollar exchange rate are comparatively analyzed using IGARCH and SVM.

  • PDF

LOCAL VOLATILITY FOR QUANTO OPTION PRICES WITH STOCHASTIC INTEREST RATES

  • Lee, Youngrok;Lee, Jaesung
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.81-91
    • /
    • 2015
  • This paper is about the local volatility for the price of a European quanto call option. We derive the explicit formula of the local volatility with constant foreign and domestic interest rates by adapting the methods of Dupire and Derman & Kani. Furthermore, we obtain the Dupire equation for the local volatility with stochastic interest rates.

The Stochastic Volatility Option Pricing Model: Evidence from a Highly Volatile Market

  • WATTANATORN, Woraphon;SOMBULTAWEE, Kedwadee
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.685-695
    • /
    • 2021
  • This study explores the impact of stochastic volatility in option pricing. To be more specific, we compare the option pricing performance between stochastic volatility option pricing model, namely, Heston option pricing model and standard Black-Scholes option pricing. Our finding, based on the market price of SET50 index option between May 2011 and September 2020, demonstrates stochastic volatility of underlying asset return for all level of moneyness. We find that both deep in the money and deep out of the money option exhibit higher volatility comparing with out of the money, at the money, and in the money option. Hence, our finding confirms the existence of volatility smile in Thai option markets. Further, based on calibration technique, the Heston option pricing model generates smaller pricing error for all level of moneyness and time to expiration than standard Black-Scholes option pricing model, though both Heston and Black-Scholes generate large pricing error for deep-in-the-money option and option that is far from expiration. Moreover, Heston option pricing model demonstrates a better pricing accuracy for call option than put option for all level and time to expiration. In sum, our finding supports the outperformance of the Heston option pricing model over standard Black-Scholes option pricing model.

Herd behavior and volatility in financial markets

  • Park, Beum-Jo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1199-1215
    • /
    • 2011
  • Relaxing an unrealistic assumption of a representative percolation model, this paper demonstrates that herd behavior leads to a high increase in volatility but not trading volume, in contrast with information flows that give rise to increases in both volatility and trading volume. Although detecting herd behavior has posed a great challenge due to its empirical difficulty, this paper proposes a new methodology for detecting trading days with herding. Furthermore, this paper suggests a herd-behavior-stochastic-volatility model, which accounts for herding in financial markets. Strong evidence in favor of the model specification over the standard stochastic volatility model is based on empirical application with high frequency data in the Korean equity market, strongly supporting the intuition that herd behavior causes excess volatility. In addition, this research indicates that strong persistence in volatility, which is a prevalent feature in financial markets, is likely attributed to herd behavior rather than news.

Rare Disaster Events, Growth Volatility, and Financial Liberalization: International Evidence

  • Bongseok Choi
    • Journal of Korea Trade
    • /
    • v.27 no.2
    • /
    • pp.96-114
    • /
    • 2023
  • Purpose - This paper elucidates a nexus between the occurrence of rare disaster events and the volatility of economic growth by distinguishing the likelihood of rare events from stochastic volatility. We provide new empirical facts based on a quarterly time series. In particular, we focus on the role of financial liberalization in spreading the economic crisis in developing countries. Design/methodology - We use quarterly data on consumption expenditure (real per capita consumption) from 44 countries, including advanced and developing countries, ending in the fourth quarter of 2020. We estimate the likelihood of rare event occurrences and stochastic volatility for countries using the Bayesian Markov chain Monte Carlo (MCMC) method developed by Barro and Jin (2021). We present our estimation results for the relationship between rare disaster events, stochastic volatility, and growth volatility. Findings - We find the global common disaster event, the COVID-19 pandemic, and thirteen country-specific disaster events. Consumption falls by about 7% on average in the first quarter of a disaster and by 4% in the long run. The occurrence of rare disaster events and the volatility of gross domestic product (GDP) growth are positively correlated (4.8%), whereas the rare events and GDP growth rate are negatively correlated (-12.1%). In particular, financial liberalization has played an important role in exacerbating the adverse impact of both rare disasters and financial market instability on growth volatility. Several case studies, including the case of South Korea, provide insights into the cause of major financial crises in small open developing countries, including the Asian currency crisis of 1998. Originality/value - This paper presents new empirical facts on the relationship between the occurrence of rare disaster events (or stochastic volatility) and growth volatility. Increasing data frequency allows for greater accuracy in assessing a country's specific risk. Our findings suggest that financial market and institutional stability can be vital for buffering against rare disaster shocks. It is necessary to preemptively strengthen the foundation for financial stability in developing countries and increase the quality of the information provided to markets.