• Title/Summary/Keyword: stochastic update

Search Result 26, Processing Time 0.019 seconds

Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference

  • Nguyen, Cong-Uy;Hoang, Truong-Vinh;Hadzalic, Emina;Dobrilla, Simona;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.411-438
    • /
    • 2022
  • In this paper, we present the parameter identification for inelastic and multi-scale problems. First, the theoretical background of several fundamental methods used in the upscaling process is reviewed. Several key definitions including random field, Bayesian theorem, Polynomial chaos expansion (PCE), and Gauss-Markov-Kalman filter are briefly summarized. An illustrative example is given to assimilate fracture energy in a simple inelastic problem with linear hardening and softening phases. Second, the parameter identification using the Gauss-Markov-Kalman filter is employed for a multi-scale problem to identify bulk and shear moduli and other material properties in a macro-scale with the data from a micro-scale as quantities of interest (QoI). The problem can also be viewed as upscaling homogenization.

Adaptive sEMG Pattern Recognition Algorithm using Principal Component Analysis (주성분 분석을 활용한 적응형 근전도 패턴 인식 알고리즘)

  • Sejin Kim;Wan Kyun Chung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.254-265
    • /
    • 2024
  • Pattern recognition for surface electromyogram (sEMG) suffers from its nonstationary and stochastic property. Although it can be relieved by acquiring new training data, it is not only time-consuming and burdensome process but also hard to set the standard when the data acquisition should be held. Therefore, we propose an adaptive sEMG pattern recognition algorithm using principal component analysis. The proposed algorithm finds the relationship between sEMG channels and extracts the optimal principal component. Based on the relative distance, the proposed algorithm determines whether to update the existing patterns or to register the new pattern. From the experimental result, it is shown that multiple patterns are generated from the sEMG data stream and they are highly related to the motion. Furthermore, the proposed algorithm has shown higher classification accuracy than k-nearest neighbor (k-NN) and support vector machine (SVM). We expect that the proposed algorithm is utilized for adaptive and long-lasting pattern recognition.

Efficient Path Search Method using Ant Colony System in Traveling Salesman Problem (순회 판매원 문제에서 개미 군락 시스템을 이용한 효율적인 경로 탐색)

  • 홍석미;이영아;정태충
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.862-866
    • /
    • 2003
  • Traveling Salesman Problem(TSP) is a combinational optimization problem, Genetic Algorithm(GA) and Lin-Kernighan(LK) Heuristic[1]that is Local Search Heuristic are one of the most commonly used methods to resolve TSP. In this paper, we introduce ACS(Ant Colony System) Algorithm as another approach to solve TSP and propose a new pheromone updating method. ACS uses pheromone information between cities in the Process where many ants make a tour, and is a method to find a optimal solution through recursive tour creation process. At the stage of Global Updating of ACS method, it updates pheromone of edges belonging to global best tour of created all edge. But we perform once more pheromone update about created all edges before global updating rule of original ACS is applied. At this process, we use the frequency of occurrence of each edges to update pheromone. We could offer stochastic value by pheromone about each edges, giving all edges' occurrence frequency as weight about Pheromone. This finds an optimal solution faster than existing ACS algorithm and prevent a local optima using more edges in next time search.

Comparison of Gradient Descent for Deep Learning (딥러닝을 위한 경사하강법 비교)

  • Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.189-194
    • /
    • 2020
  • This paper analyzes the gradient descent method, which is the one most used for learning neural networks. Learning means updating a parameter so the loss function is at its minimum. The loss function quantifies the difference between actual and predicted values. The gradient descent method uses the slope of the loss function to update the parameter to minimize error, and is currently used in libraries that provide the best deep learning algorithms. However, these algorithms are provided in the form of a black box, making it difficult to identify the advantages and disadvantages of various gradient descent methods. This paper analyzes the characteristics of the stochastic gradient descent method, the momentum method, the AdaGrad method, and the Adadelta method, which are currently used gradient descent methods. The experimental data used a modified National Institute of Standards and Technology (MNIST) data set that is widely used to verify neural networks. The hidden layer consists of two layers: the first with 500 neurons, and the second with 300. The activation function of the output layer is the softmax function, and the rectified linear unit function is used for the remaining input and hidden layers. The loss function uses cross-entropy error.

Current Status and Future Challenges of the National Population Projection in South Korea Concerning Super-Low Fertility Patterns (국제비교를 통해 바라본 한국의 장래인구추계 현황과 전망)

  • Jun, Kwang-Hee;Choi, Seul-Ki
    • Korea journal of population studies
    • /
    • v.33 no.2
    • /
    • pp.85-111
    • /
    • 2010
  • South Korea has experienced a rapid fertility decline and notable mortality improvement. As the drop in TFR was quicker and greater in terms of tempo and magnitude, it cast a new challenge of population projection - how to improve the forecasting accuracy in the country with a super-low fertility pattern. This study begin with the current status of the national population projection as implemented by Statistics Korea by comparing the 2009 interim projection with the 2006 official national population projection. Secondly, this study compare the population projection system including projection agencies, projection horizons, projection intervals, the number of projection scenarios, and the number of assumptions on fertility, mortality and international migration among super-low fertility countries. Thirdly we illustrate a stochastic population projection for Korea by transforming the population rates into one parameter series. Finally we describe the future challenges of the national population projection, and propose the projection scenarios for the 2011 official population projection. To enhance the accuracy, we suggest that Statistics Korea should update population projections more frequently or distinguish them into short-term and long-term projections. Adding more than four projection scenarios including additional types of "low-variant"fertility could show a variety of future changes. We also expect Statistics Korea topay more attention to the determination of a base population that should include both national and non-national populations. Finally we hope that Statistics Korea will find a wise way to incorporate the ideas underlying the system of stochastic population projection as part of the official national population projection.

A STUDY ON CONSTRAINED EGO METHOD FOR NOISY CFD DATA (Noisy 한 CFD 결과에 대한 구속조건을 고려한 EGO 방법 연구)

  • Bae, H.G.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.32-40
    • /
    • 2012
  • Efficient Global Optimization (EGO) method is a global optimization technique which can select the next sample point automatically by infill sampling criteria (ISC) and search for the global minimum with less samples than what the conventional global optimization method needs. ISC function consists of the predictor and mean square error (MSE) provided from the kriging model which is a stochastic metamodel. Also the constrained EGO method can minimize the objective function dealing with the constraints under EGO concept. In this study the constrained EGO method applied to the RAE2822 airfoil shape design formulated with the constraint. But the noisy CFD data caused the kriging model to fail to depict the true function. The distorted kriging model would make the EGO deviate from the correct search. This distortion of kriging model can be handled with the interpolation(p=free) kriging model. With the interpolation(p=free) kriging model, however, the search of EGO solution was stalled in the narrow feasible region without the chance to update the objective and constraint functions. Then the accuracy of EGO solution was not good enough. So the three-step search method was proposed to obtain the accurate global minimum as well as prevent from the distortion of kriging model for the noisy constrained CFD problem.

Moving Object Detection Using SURF and Label Cluster Update in Active Camera (SURF와 Label Cluster를 이용한 이동형 카메라에서 동적물체 추출)

  • Jung, Yong-Han;Park, Eun-Soo;Lee, Hyung-Ho;Wang, De-Chang;Huh, Uk-Youl;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • This paper proposes a moving object detection algorithm for active camera system that can be applied to mobile robot and intelligent surveillance system. Most of moving object detection algorithms based on a stationary camera system. These algorithms used fixed surveillance system that does not consider the motion of the background or robot tracking system that track pre-learned object. Unlike the stationary camera system, the active camera system has a problem that is difficult to extract the moving object due to the error occurred by the movement of camera. In order to overcome this problem, the motion of the camera was compensated by using SURF and Pseudo Perspective model, and then the moving object is extracted efficiently using stochastic Label Cluster transport model. This method is possible to detect moving object because that minimizes effect of the background movement. Our approach proves robust and effective in terms of moving object detection in active camera system.

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.

A cross-entropy algorithm based on Quasi-Monte Carlo estimation and its application in hull form optimization

  • Liu, Xin;Zhang, Heng;Liu, Qiang;Dong, Suzhen;Xiao, Changshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Simulation-based hull form optimization is a typical HEB (high-dimensional, expensive computationally, black-box) problem. Conventional optimization algorithms easily fall into the "curse of dimensionality" when dealing with HEB problems. A recently proposed Cross-Entropy (CE) optimization algorithm is an advanced stochastic optimization algorithm based on a probability model, which has the potential to deal with high-dimensional optimization problems. Currently, the CE algorithm is still in the theoretical research stage and rarely applied to actual engineering optimization. One reason is that the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in parameter update, leading to a large sample size. This paper proposes an improved CE algorithm based on quasi-Monte Carlo (QMC) estimation using high-dimensional truncated Sobol subsequence, referred to as the QMC-CE algorithm. The optimization performance of the proposed algorithm is better than that of the original CE algorithm. With a set of identical control parameters, the tests on six standard test functions and a hull form optimization problem show that the proposed algorithm not only has faster convergence but can also apply to complex simulation optimization problems.

Classification of Magnetic Resonance Imagery Using Deterministic Relaxation of Neural Network (신경망의 결정론적 이완에 의한 자기공명영상 분류)

  • 전준철;민경필;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • Purpose : This paper introduces an improved classification approach which adopts a deterministic relaxation method and an agglomerative clustering technique for the classification of MRI using neural network. The proposed approach can solve the problems of convergency to local optima and computational burden caused by a large number of input patterns when a neural network is used for image classification. Materials and methods : Application of Hopfield neural network has been solving various optimization problems. However, major problem of mapping an image classification problem into a neural network is that network is opt to converge to local optima and its convergency toward the global solution with a standard stochastic relaxation spends much time. Therefore, to avoid local solutions and to achieve fast convergency toward a global optimization, we adopt MFA to a Hopfield network during the classification. MFA replaces the stochastic nature of simulated annealing method with a set of deterministic update rules that act on the average value of the variable. By minimizing averages, it is possible to converge to an equilibrium state considerably faster than standard simulated annealing method. Moreover, the proposed agglomerative clustering algorithm which determines the underlying clusters of the image provides initial input values of Hopfield neural network. Results : The proposed approach which uses agglomerative clustering and deterministic relaxation approach resolves the problem of local optimization and achieves fast convergency toward a global optimization when a neural network is used for MRI classification. Conclusion : In this paper, we introduce a new paradigm to classify MRI using clustering analysis and deterministic relaxation for neural network to improve the classification results.

  • PDF