In this paper we present robust optimal supporting positions for large glass panels used for TFT-LCD monitors when they are stored in a cassette during manufacturing process. The criterion taken is to minimize their maximum deflection. Since they are supported by some supports and have large deformations, contact analysis with a geometrically nonlinear effect is necessary. In addition, the center of a panel can not be positioned exactly as intended and should be considered as uncertainties. To take into account of these effects, the mean and the standard deviation of system response functions, particularly the deflection of the panels, need be calculated. A function approximation moment method (FAMM) is utilized to estimate them. It is a special type of response surface methodology for structural reliability analysis and can be efficiently used to estimate the two stochastic properties, that is, the system performance and the perturbations caused by uncertainties. For a design purpose, they are to be minimized simultaneously by some optimization algorithm to obtain robust optimal supporting positions.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권8호
/
pp.3519-3533
/
2020
Tuberculosis is a chronic and delayed infection which is easily experienced by young people. According to the statistics of the World Health Organization (WHO), there are nearly ten million fell ill with tuberculosis and a total of 1.5 million people died from tuberculosis in 2018 (including 251000 people with HIV). Tuberculosis is the largest single infectious pathogen that leads to death. In order to help doctors with tuberculosis diagnosis, we compare the tuberculosis classification abilities of six popular convolutional neural network (CNN) models in the same data set to find the best model. Before training, we optimize three parts of CNN to achieve better results. We employ sigmoid function to replace the step function as the activation function. What's more, we use binary cross entropy function as the cost function to replace traditional quadratic cost function. Finally, we choose stochastic gradient descent (SGD) as gradient descent algorithm. From the results of our experiments, we find that Densenet121 is most suitable for tuberculosis diagnosis and achieve a highest accuracy of 0.835. The optimization and expansion depend on the increase of data set and the improvements of Densenet121.
돌발홍수, 집중호우 등 강우가 발생 원인되는 자연재해에 효과적으로 대응하기 위한 연구가 활발히 이루어지고 있으나 강우의 시공간 변동성과 발생과정의 복잡한 물리과정으로 인해 강우 추정에 한계를 가진다. 일반적으로 강우 추정은 물리적, 추계학적 모형을 이용하며 추계학적 모형의 점과정(point process)을 이용하여 강우를 생산한다. 추계학적 강우 모형은 관측 강우의 시간 스케일, 강우발생 빈도, 강우 강도 등 강우 구조의 특성을 반영 할 수 있다는 장점을 가지고 있으나 생산되는 강우의 구조가 추정되는 매개변수에 크게 의존한다는 점에서 실제 강우에 적합한 매개변수 추정이 중요하다. 본 연구에서는 낙동강 유역내에 있는 20개의 강우관측 지점을 대상으로 1973년-2017년까지의 강우 관측자료를 수집하였으며 추계학적 강우생성 모형으로 점과정을 이용하는 추계학적 강우생성 모형인 NSRPM(Neymann-Scott rectangular pulse model)을 선정하였다. NSRPM모형의 매개변수를 추정하기위한 최적기법으로 DFP(Davidon-Fletcher-Powell), GA(genetic algorithm), Nelder-Mead, DE(differential evolution)를 이용하여 추정된 매개변수의 적합성을 분석하고 지역특성을 고려한 매개변수 추정 기법을 제시하였다. 추정된 모형의 매개변수를 분석한 결과 DE와 Nelder-Mead 기법이 높은 적합성을 보였으며 DFP, GA기법이 상대적으로 낮은 적합도를 보였다.
Ajeet K. Jain;PVRD Prasad Rao ;K. Venkatesh Sharma
International Journal of Computer Science & Network Security
/
제23권10호
/
pp.115-128
/
2023
Deep learning has been incorporating various optimization techniques motivated by new pragmatic optimizing algorithm advancements and their usage has a central role in Machine learning. In recent past, new avatars of various optimizers are being put into practice and their suitability and applicability has been reported on various domains. The resurgence of novelty starts from Stochastic Gradient Descent to convex and non-convex and derivative-free approaches. In the contemporary of these horizons of optimizers, choosing a best-fit or appropriate optimizer is an important consideration in deep learning theme as these working-horse engines determines the final performance predicted by the model. Moreover with increasing number of deep layers tantamount higher complexity with hyper-parameter tuning and consequently need to delve for a befitting optimizer. We empirically examine most popular and widely used optimizers on various data sets and networks-like MNIST and GAN plus others. The pragmatic comparison focuses on their similarities, differences and possibilities of their suitability for a given application. Additionally, the recent optimizer variants are highlighted with their subtlety. The article emphasizes on their critical role and pinpoints buttress options while choosing among them.
This paper presents a motion planning algorithm of autonomous racing vehicles for mimicking the characteristics of a human driver. Time optimal maneuver of a race car has been actively studied as a major research area over the past decades. Although the time optimization problem yields a single time series solution of minimum time maneuver inputs for the vehicle, human drivers achieve similar lap times while taking various racing lines and velocity profiles. In order to model the characteristics of a specific driver and reproduce the motion, a stochastic motion planning framework based on kernelized motion primitive is introduced. The proposed framework imitates the behavior of the generated reference motion, which is based on a small number of human demonstration laps along the racetrack using Gaussian mixture model and Gaussian mixture regression. The mean and covariance of the racing line and velocity profile mimicking the driver are obtained by accumulating the outputs tested at equidistantly sampled input points. The results confirmed that the obtained lateral and longitudinal motion simulates the driver's driving characteristics, which are feasible for actual vehicle test environments.
본 논문에서 역 방향 링크 채널에 대해 비 선형 등화기를 이용하여 CDMA 셀룰라 시스템을 연구하였다. 일반적으로 무선 통신에서 불확실한 채널 특성 때문에 Observable 들의 확률분포는 유한 세트의 파라미터로 규정될 수 없다. 대신에 training 샘플에 기반을 둔 Quantile과 Vector Quantizer를 사용함으로서 유한 수의 disjoint된 영역으로 m차 샘플 공간으로 분할하였다. 제안된 알고리듬은 RMSA 알고리즘에 의해 예측된 Quantile와 조건부 분할 모멘트에 따른 regression function의 부분적인 근사에 근간을 두고 있다. 본 논문의 등화기와 검출기는 잡음 분포의 Variation에 민감하지 않다는 관점에서 상당히 강한 특성을 보여 준다. 주요 아이디어는 Robust equalizer와 Robust partition detector가 어떤 환경의 무선 채널 하에서도 partition되지 않은 Observation space의 일반적인 등화기 보다 Observation의 등 확률로 분할된 부 공간에서 더 낳은 성능을 보여 준다. 또한 이런 개념을 CDMA 시스템에 적용하여 BER 성능을 분석하였다.
본 연구는 관측된 단일 강우-유출사상으로부터 최적화 모형과 추계학적 기법을 결합하여 침투율 공식의 최적매개변수와 단위도를 결정하였다. 수문계측유역에서의 최적 단위도와 침투율을 결정하기 위하여 관측 유출수문곡선과 계산치의 절대오차누계를 최소화하는 모형과 절대최대오차를 최소화하는 선형계획모형을 정립하였다. 손실율의 매개변수를 섭동하기 위하여 추계학적 최적화방법 중의 하나인 Multistart 알고리즘을 채택하였다. Multistart는 분석가능영역을 효과적으로 탐사하여 Kostiakov, Philip, Horton 공식의 최적매개변수를 결정하였다. 유역평균침투능 $\Phi$지표를 적용하면 유일한 단위도의 종거가 결정되지만, Kostiakov, Philip, Horton 및 Green-Ampt공식은 매개변수의 값에 따라 단위도의 종거와 침투율은 달라진다. Green-Ampt공식의 매개변수는 시산법을 적용하여 결정하였다. 제안한 방법의 적용성을 검정하기 위하여 강우-유출 관측자료를 보유한 유역에 관하여 침투식의 매개변수와 단위도를 결정하였으며, 이전 연구자들의 결과보다는 나은 해를 구하였다.
본 연구에서는 (주)파인텍에서 개발한 제올라이트 4A 분리막을 이용하여 물, 에탄올, 이소프로필알코올 단일 성분 및 혼합물의 투과증발 실험을 수행하였다. 본 분리막은 수열합성법을 이용하여 제막하였고, Si/Al 비율이 1인 LTA 구조에 $Na^+$를 이온교환하여 약 $4{\AA}$의 기공크기를 갖고 있으며, 강한 친수성을 나타내고 있다. 물리적 특성을 확인하기 위해 SEM, porosimetry, BET, 압축강도계를 이용하였다. 다양한 온도 및 농도 조건 실험을 통해 제올라이트 4A 분리막이 물/에탄올(분리계수 3,000 이상) 및 물/이소프로필알코올(분리계수 1,500 이상) 혼합물로 부터 물을 선택적으로 분리할 수 있음을 확인하였다. 활동도계수, Generalized Maxwell Stefan 모형 및 Dusty Gas 모형을 이용하여 단일성분 및 혼합물의 투과증발 거동을 모사하였으며, Genetic Algorithm를 이용한 상수추정을 통하여 분리층의 흡착 및 확산상수를 구하였다.
화학공정의 기초설계는 물질수지와 열수지 계산을 기초로 공정의 경제성을 확보하고 주어진 조건 내에서 원하는 제품을 생산 가능하도록 한다. 이 단계를 통해 공정은 사용될 물질과 반응, 설비의 구조와 운전 조건 등이 결정되기 때문에 이후 바뀔 수 없는 고유한 특성을 갖게 된다. 고유한 특성은 뛰어난 경제성일 수도 있지만 다양한 잠재적 위험요인을 내포하는 것일 수도 있다. 따라서 기초설계를 위한 공정모사와 정량적 위험성 평가 기법의 통합을 통해 보다 안전하면서도 경제적인 공정을 설계하는 것이 중요하다. 본 논문에서는 LNG 액화공정을 Aspen HYSYS를 이용하여 모사하고, 폭발 사고에 대한 정량적 위험성 평가를 수행함으로써 잠재적 위험성을 최소화하면서도 경제성을 고려하도록 설계변수를 결정하였다. 이를 위해 확률적 최적화 방법론을 이용하여 Aspen HYSYS의 최적화 한계를 극복하였고, Aspen HYSYS와 Matlab의 연동을 통해 정량적 위험성 평가의 정확성을 높이며 최적화를 용이하게 하였다. 정량적 위험성 평가 결과, 공정 변수 중 안전성 확보를 위해 중요한 변수는 혼합냉매의 압력이었고, 0.5~10%의 운전비용 증가를 통해 잠재적 위험성을 4~18% 줄일 수 있었다. 비용을 크게 증가시킬수록 위험성의 절대적 수치는 낮아지지만 비용 대비 위험성 감소의 효과는 떨어졌다. 이처럼 공정모사와 정량적 위험성 평가 기법의 통합은 태생적으로 보다 안전한 공정의 설계가 가능하게 하고, 기초설계 단계에서부터 공정 내 위험요인을 수치적으로 확인할 수 있어 위험요인이 적은 특성을 갖도록 공정을 설계하는데 도움이 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.